mrvlimit.rlg 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. Sun Aug 18 19:28:33 2002 run on Windows
  2. off exp;
  3. off mcd;
  4. mrv_limit(e^x,x,infinity);
  5. infinity
  6. ex:=log(log(x)+log(log(x)))-log(log(x));
  7. ex := - (log(log(x)) - log(log(log(x)) + log(x)))
  8. ex:=ex/(log(log(x)+log(log(log(x)))));
  9. ex :=
  10. -1
  11. - (log(log(x)) - log(log(log(x)) + log(x)))*log(log(log(log(x))) + log(x))
  12. ex:=ex*log(x);
  13. ex := - (log(log(x)) - log(log(log(x)) + log(x)))
  14. -1
  15. *log(log(log(log(x))) + log(x)) *log(x)
  16. mrv_limit(e^-x,x,infinity);
  17. 0
  18. mrv_limit(log(x),x,infinity);
  19. infinity
  20. mrv_limit(1/log(x),x,infinity);
  21. 0
  22. a:=e^(1/x-e^-x)-e^(1/x);
  23. -1 - x
  24. x - e
  25. a := e *(e - 1)
  26. a:=a/e^(-x);
  27. -1 - x
  28. x + x - e
  29. a := e *(e - 1)
  30. mrv_limit(a,x,infinity) ;
  31. -1
  32. % all of these are correct
  33. mrv_limit(e^-x,x,infinity) ;
  34. 0
  35. mrv_limit(log(x),x,infinity) ;
  36. infinity
  37. mrv_limit(1/log(x),x,infinity) ;
  38. 0
  39. a:=e^(1/x-e^-x)-e^(1/x);
  40. -1 - x
  41. x - e
  42. a := e *(e - 1)
  43. a:=a/e^(-x);
  44. -1 - x
  45. x + x - e
  46. a := e *(e - 1)
  47. b:=e^x*(e^(1/x-e^-x)-e^(1/x));
  48. -1 - x
  49. x + x - e
  50. b := e *(e - 1)
  51. %c:=e^x*(e^(1/x+e^(-x)+e^(-x^2))-e^(1/x-e^(-e^x)))
  52. maxi1({e^(-x^2)},{e^x});
  53. 2
  54. - x
  55. {e }
  56. cc:= e^(log(log(x+e^(log(x)*log(log(x)))))/log(log(log(e^x+x+log(x)))));
  57. x -1 log(x)
  58. log(log(log(log(x) + x + e ))) *log(log(log(x) + x))
  59. cc := e
  60. b:=e^x*(e^(1/x-e^-x)-e^(1/x));
  61. -1 - x
  62. x + x - e
  63. b := e *(e - 1)
  64. c:=e^x*(e^(1/x+e^(-x)+e^(-x^2))-e^(1/x-e^(-e^x)));
  65. x 2
  66. -1 - e - x - x
  67. x + x - e e + e
  68. c := - e *(e - e )
  69. e^(log(log(x+e^(log(x)*log(log(x)))))/(log(log(log(e^x+x+log(x))))));
  70. x -1 log(x)
  71. log(log(log(log(x) + x + e ))) *log(log(log(x) + x))
  72. e
  73. %% mrv_limit(ws,x,infinity);
  74. aa:=e^(e^(e^x));
  75. x
  76. e
  77. e
  78. aa := e
  79. bb:=e^(e^(e^(x-e^(-e^x))));
  80. x
  81. - e
  82. - e + x
  83. e
  84. e
  85. bb := e
  86. ex1:=(e^x)*(e^((1/x)-e^(-x))-e^(1/x));
  87. -1 - x
  88. x + x - e
  89. ex1 := e *(e - 1)
  90. % returns -1 correct
  91. ex2:=(e^x)*(e^((1/x)-e^(-x)-e^(-x^2))-e^((1/x)-e^(-e^x)));
  92. x 2
  93. -1 - e - x - x
  94. x + x - e - e - e
  95. ex2 := - e *(e - e )
  96. % returns infinity
  97. ex3:=e^(e^(x-e^-x)/(1-1/x))-e^(e^x);
  98. - x
  99. x - e + x -1 -1
  100. e - e *(x - 1)
  101. ex3 := - (e - e )
  102. % returns - infinity
  103. ex4:=e^(e^((e^x)/(1-1/x)))-e^(e^((e^x)/(1-1/x-(log(x))^(-log(x)))));
  104. x - log(x) -1 -1 x -1 -1
  105. - e *(log(x) + x - 1) - e *(x - 1)
  106. e e
  107. ex4 := - (e - e )
  108. ex5:=(e^(e^(e^(x+e^-x))))/(e^(e^(e^x)));
  109. - x
  110. e + x x
  111. e e
  112. e - e
  113. ex5 := e
  114. ex6:=(e^(e^(e^x)))/(e^(e^(e^(x-e^(-e^x)))));
  115. x
  116. - e
  117. - e + x x
  118. e e
  119. - e + e
  120. ex6 := e
  121. ex7:=(e^(e^(e^x)))/(e^(e^(e^(x-e^(e^x)))));
  122. x
  123. e
  124. - e + x x
  125. e e
  126. - e + e
  127. ex7 := e
  128. ex8:=(e^(e^x))/(e^(e^(x-e^(-e^(e^x)))));
  129. x
  130. e
  131. - e
  132. - e + x x
  133. - e + e
  134. ex8 := e
  135. ex9:=((log(x)^2)*e^(sqrt(log(x))*((log(log(x)))^2)*e^((sqrt(log(log(x))))*(log(log(log(x)))^3))))/sqrt(x);
  136. ex9 :=
  137. 3
  138. sqrt(log(log(x)))*log(log(log(x))) 2
  139. - 1/2 e *sqrt(log(x))*log(log(x)) 2
  140. x *e *log(x)
  141. ex10:=((x*log(x))*(log(x*e^x-x^2))^2)/(log(log(x^2+2*e^(3*x^3*log(x)))));
  142. 3
  143. 3*x 2 -1 x 2
  144. ex10 := log(log(2*x + x )) *log((e - x)*x) *log(x)*x
  145. misc1:=1/(e^(-x+e^-x))-e^x;
  146. - x
  147. x - e
  148. misc1 := e *(e - 1)
  149. % returns -1 correct
  150. misc2:=(e^(1/x-e^-x)-e^(1/x))/(e^-x);
  151. -1 - x
  152. x + x - e
  153. misc2 := e *(e - 1)
  154. % returns -1 correct
  155. misc3:=e^(-log(x+e^-x));
  156. - x -1
  157. misc3 := (e + x)
  158. % returns 0 correct
  159. misc4:=e^(x-e^x);
  160. x
  161. - e + x
  162. misc4 := e
  163. % returns 0 correct
  164. % bb limit is infinity correct
  165. mrv_limit(ex,x,infinity);
  166. 1
  167. %1
  168. mrv_limit(ex1,x,infinity);
  169. -1
  170. % -1
  171. %% mrv_limit(ex2,x,infinity); % -1
  172. %% mrv_limit(b,x,infinity); % -1
  173. mrv_limit(a,x,infinity);
  174. - infinity
  175. %% mrv_limit(ex3,x,infinity);
  176. %% mrv_limit(ex4,x,infinity);
  177. %% mrv_limit(ex5,x,infinity); % 0
  178. %% mrv_limit(ex6,x,infinity);
  179. mrv_limit(misc1,x,infinity);
  180. -1
  181. mrv_limit(misc2,x,infinity);
  182. - infinity
  183. mrv_limit(misc3,x,infinity);
  184. 0
  185. mrv_limit(misc4,x,infinity);
  186. 0
  187. end;
  188. Time for test: 58043 ms, plus GC time: 3986 ms