linalg.rlg 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211
  1. Sun Aug 18 18:15:15 2002 run on Windows
  2. if lisp !*rounded then rounded_was_on := t
  3. else rounded_was_on := nil;
  4. mat1 := mat((1,2,3,4,5),(2,3,4,5,6),(3,4,5,6,7),(4,5,6,7,8),(5,6,7,8,9));
  5. [1 2 3 4 5]
  6. [ ]
  7. [2 3 4 5 6]
  8. [ ]
  9. mat1 := [3 4 5 6 7]
  10. [ ]
  11. [4 5 6 7 8]
  12. [ ]
  13. [5 6 7 8 9]
  14. mat2 := mat((1,1,1,1),(2,2,2,2),(3,3,3,3),(4,4,4,4));
  15. [1 1 1 1]
  16. [ ]
  17. [2 2 2 2]
  18. mat2 := [ ]
  19. [3 3 3 3]
  20. [ ]
  21. [4 4 4 4]
  22. mat3 := mat((x),(x),(x),(x));
  23. [x]
  24. [ ]
  25. [x]
  26. mat3 := [ ]
  27. [x]
  28. [ ]
  29. [x]
  30. mat4 := mat((3,3),(4,4),(5,5),(6,6));
  31. [3 3]
  32. [ ]
  33. [4 4]
  34. mat4 := [ ]
  35. [5 5]
  36. [ ]
  37. [6 6]
  38. mat5 := mat((1,2,1,1),(1,2,3,1),(4,5,1,2),(3,4,5,6));
  39. [1 2 1 1]
  40. [ ]
  41. [1 2 3 1]
  42. mat5 := [ ]
  43. [4 5 1 2]
  44. [ ]
  45. [3 4 5 6]
  46. mat6 := mat((i+1,i+2,i+3),(4,5,2),(1,i,0));
  47. [i + 1 i + 2 i + 3]
  48. [ ]
  49. mat6 := [ 4 5 2 ]
  50. [ ]
  51. [ 1 i 0 ]
  52. mat7 := mat((1,1,0),(1,3,1),(0,1,1));
  53. [1 1 0]
  54. [ ]
  55. mat7 := [1 3 1]
  56. [ ]
  57. [0 1 1]
  58. mat8 := mat((1,3),(-4,3));
  59. [1 3]
  60. mat8 := [ ]
  61. [-4 3]
  62. mat9 := mat((1,2,3,4),(9,8,7,6));
  63. [1 2 3 4]
  64. mat9 := [ ]
  65. [9 8 7 6]
  66. poly := x^7+x^5+4*x^4+5*x^3+12;
  67. 7 5 4 3
  68. poly := x + x + 4*x + 5*x + 12
  69. poly1 := x^2+x*y^3+x*y*z^3+y*x+2+y*3;
  70. 2 3 3
  71. poly1 := x + x*y + x*y*z + x*y + 3*y + 2
  72. on errcont;
  73. % Basis matrix manipulations.
  74. add_columns(mat1,1,2,5*y);
  75. [1 5*y + 2 3 4 5]
  76. [ ]
  77. [2 10*y + 3 4 5 6]
  78. [ ]
  79. [3 15*y + 4 5 6 7]
  80. [ ]
  81. [4 5*(4*y + 1) 6 7 8]
  82. [ ]
  83. [5 25*y + 6 7 8 9]
  84. add_rows(mat1,1,2,x);
  85. [ 1 2 3 4 5 ]
  86. [ ]
  87. [x + 2 2*x + 3 3*x + 4 4*x + 5 5*x + 6]
  88. [ ]
  89. [ 3 4 5 6 7 ]
  90. [ ]
  91. [ 4 5 6 7 8 ]
  92. [ ]
  93. [ 5 6 7 8 9 ]
  94. add_to_columns(mat1,3,1000);
  95. [1 2 1003 4 5]
  96. [ ]
  97. [2 3 1004 5 6]
  98. [ ]
  99. [3 4 1005 6 7]
  100. [ ]
  101. [4 5 1006 7 8]
  102. [ ]
  103. [5 6 1007 8 9]
  104. add_to_columns(mat1,{1,2,3},y);
  105. [y + 1 y + 2 y + 3 4 5]
  106. [ ]
  107. [y + 2 y + 3 y + 4 5 6]
  108. [ ]
  109. [y + 3 y + 4 y + 5 6 7]
  110. [ ]
  111. [y + 4 y + 5 y + 6 7 8]
  112. [ ]
  113. [y + 5 y + 6 y + 7 8 9]
  114. add_to_rows(mat1,2,1000);
  115. [ 1 2 3 4 5 ]
  116. [ ]
  117. [1002 1003 1004 1005 1006]
  118. [ ]
  119. [ 3 4 5 6 7 ]
  120. [ ]
  121. [ 4 5 6 7 8 ]
  122. [ ]
  123. [ 5 6 7 8 9 ]
  124. add_to_rows(mat1,{1,2,3},x);
  125. [x + 1 x + 2 x + 3 x + 4 x + 5]
  126. [ ]
  127. [x + 2 x + 3 x + 4 x + 5 x + 6]
  128. [ ]
  129. [x + 3 x + 4 x + 5 x + 6 x + 7]
  130. [ ]
  131. [ 4 5 6 7 8 ]
  132. [ ]
  133. [ 5 6 7 8 9 ]
  134. augment_columns(mat1,2);
  135. [2]
  136. [ ]
  137. [3]
  138. [ ]
  139. [4]
  140. [ ]
  141. [5]
  142. [ ]
  143. [6]
  144. augment_columns(mat1,{1,2,5});
  145. [1 2 5]
  146. [ ]
  147. [2 3 6]
  148. [ ]
  149. [3 4 7]
  150. [ ]
  151. [4 5 8]
  152. [ ]
  153. [5 6 9]
  154. stack_rows(mat1,3);
  155. [3 4 5 6 7]
  156. stack_rows(mat1,{1,3,5});
  157. [1 2 3 4 5]
  158. [ ]
  159. [3 4 5 6 7]
  160. [ ]
  161. [5 6 7 8 9]
  162. char_poly(mat1,x);
  163. 3 2
  164. x *(x - 25*x - 50)
  165. column_dim(mat2);
  166. 4
  167. row_dim(mat1);
  168. 5
  169. copy_into(mat7,mat1,2,3);
  170. [1 2 3 4 5]
  171. [ ]
  172. [2 3 1 1 0]
  173. [ ]
  174. [3 4 1 3 1]
  175. [ ]
  176. [4 5 0 1 1]
  177. [ ]
  178. [5 6 7 8 9]
  179. copy_into(mat7,mat1,5,5);
  180. ***** Error in copy_into: the matrix
  181. [1 1 0]
  182. [ ]
  183. [1 3 1]
  184. [ ]
  185. [0 1 1]
  186. does not fit into
  187. [1 2 3 4 5]
  188. [ ]
  189. [2 3 4 5 6]
  190. [ ]
  191. [3 4 5 6 7]
  192. [ ]
  193. [4 5 6 7 8]
  194. [ ]
  195. [5 6 7 8 9]
  196. at position 5,5.
  197. diagonal(3);
  198. [3]
  199. % diagonal can take both a list of arguments or just the arguments.
  200. diagonal({mat2,mat6});
  201. [1 1 1 1 0 0 0 ]
  202. [ ]
  203. [2 2 2 2 0 0 0 ]
  204. [ ]
  205. [3 3 3 3 0 0 0 ]
  206. [ ]
  207. [4 4 4 4 0 0 0 ]
  208. [ ]
  209. [0 0 0 0 i + 1 i + 2 i + 3]
  210. [ ]
  211. [0 0 0 0 4 5 2 ]
  212. [ ]
  213. [0 0 0 0 1 i 0 ]
  214. diagonal(mat1,mat2,mat5);
  215. [1 2 3 4 5 0 0 0 0 0 0 0 0]
  216. [ ]
  217. [2 3 4 5 6 0 0 0 0 0 0 0 0]
  218. [ ]
  219. [3 4 5 6 7 0 0 0 0 0 0 0 0]
  220. [ ]
  221. [4 5 6 7 8 0 0 0 0 0 0 0 0]
  222. [ ]
  223. [5 6 7 8 9 0 0 0 0 0 0 0 0]
  224. [ ]
  225. [0 0 0 0 0 1 1 1 1 0 0 0 0]
  226. [ ]
  227. [0 0 0 0 0 2 2 2 2 0 0 0 0]
  228. [ ]
  229. [0 0 0 0 0 3 3 3 3 0 0 0 0]
  230. [ ]
  231. [0 0 0 0 0 4 4 4 4 0 0 0 0]
  232. [ ]
  233. [0 0 0 0 0 0 0 0 0 1 2 1 1]
  234. [ ]
  235. [0 0 0 0 0 0 0 0 0 1 2 3 1]
  236. [ ]
  237. [0 0 0 0 0 0 0 0 0 4 5 1 2]
  238. [ ]
  239. [0 0 0 0 0 0 0 0 0 3 4 5 6]
  240. extend(mat1,3,2,x);
  241. [1 2 3 4 5 x x]
  242. [ ]
  243. [2 3 4 5 6 x x]
  244. [ ]
  245. [3 4 5 6 7 x x]
  246. [ ]
  247. [4 5 6 7 8 x x]
  248. [ ]
  249. [5 6 7 8 9 x x]
  250. [ ]
  251. [x x x x x x x]
  252. [ ]
  253. [x x x x x x x]
  254. [ ]
  255. [x x x x x x x]
  256. find_companion(mat5,x);
  257. 2
  258. x - 2*x - 2
  259. get_columns(mat1,1);
  260. {
  261. [1]
  262. [ ]
  263. [2]
  264. [ ]
  265. [3]
  266. [ ]
  267. [4]
  268. [ ]
  269. [5]
  270. }
  271. get_columns(mat1,{1,2});
  272. {
  273. [1]
  274. [ ]
  275. [2]
  276. [ ]
  277. [3]
  278. [ ]
  279. [4]
  280. [ ]
  281. [5]
  282. ,
  283. [2]
  284. [ ]
  285. [3]
  286. [ ]
  287. [4]
  288. [ ]
  289. [5]
  290. [ ]
  291. [6]
  292. }
  293. get_rows(mat1,3);
  294. {
  295. [3 4 5 6 7]
  296. }
  297. get_rows(mat1,{1,3});
  298. {
  299. [1 2 3 4 5]
  300. ,
  301. [3 4 5 6 7]
  302. }
  303. hermitian_tp(mat6);
  304. [ - i + 1 4 1 ]
  305. [ ]
  306. [ - i + 2 5 - i]
  307. [ ]
  308. [ - i + 3 2 0 ]
  309. % matrix_augment and matrix_stack can take both a list of arguments
  310. % or just the arguments.
  311. matrix_augment({mat1,mat2});
  312. ***** Error in matrix_augment:
  313. ***** all input matrices must have the same row dimension.
  314. matrix_augment(mat4,mat2,mat4);
  315. [3 3 1 1 1 1 3 3]
  316. [ ]
  317. [4 4 2 2 2 2 4 4]
  318. [ ]
  319. [5 5 3 3 3 3 5 5]
  320. [ ]
  321. [6 6 4 4 4 4 6 6]
  322. matrix_stack(mat1,mat2);
  323. ***** Error in matrix_stack:
  324. ***** all input matrices must have the same column dimension.
  325. matrix_stack({mat6,mat((z,z,z)),mat7});
  326. [i + 1 i + 2 i + 3]
  327. [ ]
  328. [ 4 5 2 ]
  329. [ ]
  330. [ 1 i 0 ]
  331. [ ]
  332. [ z z z ]
  333. [ ]
  334. [ 1 1 0 ]
  335. [ ]
  336. [ 1 3 1 ]
  337. [ ]
  338. [ 0 1 1 ]
  339. minor(mat1,2,3);
  340. [1 2 4 5]
  341. [ ]
  342. [3 4 6 7]
  343. [ ]
  344. [4 5 7 8]
  345. [ ]
  346. [5 6 8 9]
  347. mult_columns(mat1,3,y);
  348. [1 2 3*y 4 5]
  349. [ ]
  350. [2 3 4*y 5 6]
  351. [ ]
  352. [3 4 5*y 6 7]
  353. [ ]
  354. [4 5 6*y 7 8]
  355. [ ]
  356. [5 6 7*y 8 9]
  357. mult_columns(mat1,{2,3,4},100);
  358. [1 200 300 400 5]
  359. [ ]
  360. [2 300 400 500 6]
  361. [ ]
  362. [3 400 500 600 7]
  363. [ ]
  364. [4 500 600 700 8]
  365. [ ]
  366. [5 600 700 800 9]
  367. mult_rows(mat1,2,x);
  368. [ 1 2 3 4 5 ]
  369. [ ]
  370. [2*x 3*x 4*x 5*x 6*x]
  371. [ ]
  372. [ 3 4 5 6 7 ]
  373. [ ]
  374. [ 4 5 6 7 8 ]
  375. [ ]
  376. [ 5 6 7 8 9 ]
  377. mult_rows(mat1,{1,3,5},10);
  378. [10 20 30 40 50]
  379. [ ]
  380. [2 3 4 5 6 ]
  381. [ ]
  382. [30 40 50 60 70]
  383. [ ]
  384. [4 5 6 7 8 ]
  385. [ ]
  386. [50 60 70 80 90]
  387. pivot(mat1,3,3);
  388. [ - 4 - 2 2 4 ]
  389. [------ ------ 0 --- --- ]
  390. [ 5 5 5 5 ]
  391. [ ]
  392. [ - 2 - 1 1 2 ]
  393. [------ ------ 0 --- --- ]
  394. [ 5 5 5 5 ]
  395. [ ]
  396. [ 3 4 5 6 7 ]
  397. [ ]
  398. [ 2 1 - 1 - 2 ]
  399. [ --- --- 0 ------ ------]
  400. [ 5 5 5 5 ]
  401. [ ]
  402. [ 4 2 - 2 - 4 ]
  403. [ --- --- 0 ------ ------]
  404. [ 5 5 5 5 ]
  405. rows_pivot(mat1,3,3,{1,5});
  406. [ - 4 - 2 2 4 ]
  407. [------ ------ 0 --- --- ]
  408. [ 5 5 5 5 ]
  409. [ ]
  410. [ 2 3 4 5 6 ]
  411. [ ]
  412. [ 3 4 5 6 7 ]
  413. [ ]
  414. [ 4 5 6 7 8 ]
  415. [ ]
  416. [ 4 2 - 2 - 4 ]
  417. [ --- --- 0 ------ ------]
  418. [ 5 5 5 5 ]
  419. remove_columns(mat1,3);
  420. [1 2 4 5]
  421. [ ]
  422. [2 3 5 6]
  423. [ ]
  424. [3 4 6 7]
  425. [ ]
  426. [4 5 7 8]
  427. [ ]
  428. [5 6 8 9]
  429. remove_columns(mat1,{2,3,4});
  430. [1 5]
  431. [ ]
  432. [2 6]
  433. [ ]
  434. [3 7]
  435. [ ]
  436. [4 8]
  437. [ ]
  438. [5 9]
  439. remove_rows(mat1,2);
  440. [1 2 3 4 5]
  441. [ ]
  442. [3 4 5 6 7]
  443. [ ]
  444. [4 5 6 7 8]
  445. [ ]
  446. [5 6 7 8 9]
  447. remove_rows(mat1,{1,3});
  448. [2 3 4 5 6]
  449. [ ]
  450. [4 5 6 7 8]
  451. [ ]
  452. [5 6 7 8 9]
  453. remove_rows(mat1,{1,2,3,4,5});
  454. ***** Warning in remove_rows:
  455. all the rows have been removed. Returning nil.
  456. swap_columns(mat1,2,4);
  457. [1 4 3 2 5]
  458. [ ]
  459. [2 5 4 3 6]
  460. [ ]
  461. [3 6 5 4 7]
  462. [ ]
  463. [4 7 6 5 8]
  464. [ ]
  465. [5 8 7 6 9]
  466. swap_rows(mat1,1,2);
  467. [2 3 4 5 6]
  468. [ ]
  469. [1 2 3 4 5]
  470. [ ]
  471. [3 4 5 6 7]
  472. [ ]
  473. [4 5 6 7 8]
  474. [ ]
  475. [5 6 7 8 9]
  476. swap_entries(mat1,{1,1},{5,5});
  477. [9 2 3 4 5]
  478. [ ]
  479. [2 3 4 5 6]
  480. [ ]
  481. [3 4 5 6 7]
  482. [ ]
  483. [4 5 6 7 8]
  484. [ ]
  485. [5 6 7 8 1]
  486. % Constructors - functions that create matrices.
  487. band_matrix(x,5);
  488. [x 0 0 0 0]
  489. [ ]
  490. [0 x 0 0 0]
  491. [ ]
  492. [0 0 x 0 0]
  493. [ ]
  494. [0 0 0 x 0]
  495. [ ]
  496. [0 0 0 0 x]
  497. band_matrix({x,y,z},6);
  498. [y z 0 0 0 0]
  499. [ ]
  500. [x y z 0 0 0]
  501. [ ]
  502. [0 x y z 0 0]
  503. [ ]
  504. [0 0 x y z 0]
  505. [ ]
  506. [0 0 0 x y z]
  507. [ ]
  508. [0 0 0 0 x y]
  509. block_matrix(1,2,{mat1,mat2});
  510. ***** Error in block_matrix: row dimensions of
  511. ***** matrices into block_matrix are not compatible
  512. block_matrix(2,3,{mat2,mat3,mat2,mat3,mat2,mat2});
  513. [1 1 1 1 x 1 1 1 1]
  514. [ ]
  515. [2 2 2 2 x 2 2 2 2]
  516. [ ]
  517. [3 3 3 3 x 3 3 3 3]
  518. [ ]
  519. [4 4 4 4 x 4 4 4 4]
  520. [ ]
  521. [x 1 1 1 1 1 1 1 1]
  522. [ ]
  523. [x 2 2 2 2 2 2 2 2]
  524. [ ]
  525. [x 3 3 3 3 3 3 3 3]
  526. [ ]
  527. [x 4 4 4 4 4 4 4 4]
  528. char_matrix(mat1,x);
  529. [x - 1 -2 -3 -4 -5 ]
  530. [ ]
  531. [ -2 x - 3 -4 -5 -6 ]
  532. [ ]
  533. [ -3 -4 x - 5 -6 -7 ]
  534. [ ]
  535. [ -4 -5 -6 x - 7 -8 ]
  536. [ ]
  537. [ -5 -6 -7 -8 x - 9]
  538. cfmat := coeff_matrix({x+y+4*z=10,y+x-z=20,x+y+4});
  539. cfmat := {
  540. [4 1 1]
  541. [ ]
  542. [-1 1 1]
  543. [ ]
  544. [0 1 1]
  545. ,
  546. [z]
  547. [ ]
  548. [y]
  549. [ ]
  550. [x]
  551. ,
  552. [10]
  553. [ ]
  554. [20]
  555. [ ]
  556. [-4]
  557. }
  558. first cfmat * second cfmat;
  559. [x + y + 4*z]
  560. [ ]
  561. [ x + y - z ]
  562. [ ]
  563. [ x + y ]
  564. third cfmat;
  565. [10]
  566. [ ]
  567. [20]
  568. [ ]
  569. [-4]
  570. companion(poly,x);
  571. [0 0 0 0 0 0 -12]
  572. [ ]
  573. [1 0 0 0 0 0 0 ]
  574. [ ]
  575. [0 1 0 0 0 0 0 ]
  576. [ ]
  577. [0 0 1 0 0 0 -5 ]
  578. [ ]
  579. [0 0 0 1 0 0 -4 ]
  580. [ ]
  581. [0 0 0 0 1 0 -1 ]
  582. [ ]
  583. [0 0 0 0 0 1 0 ]
  584. hessian(poly1,{w,x,y,z});
  585. [0 0 0 0 ]
  586. [ ]
  587. [ 2 3 2 ]
  588. [0 2 3*y + z + 1 3*y*z ]
  589. [ ]
  590. [ 2 3 2 ]
  591. [0 3*y + z + 1 6*x*y 3*x*z ]
  592. [ ]
  593. [ 2 2 ]
  594. [0 3*y*z 3*x*z 6*x*y*z]
  595. hilbert(4,1);
  596. [ 1 1 1 ]
  597. [ 1 --- --- ---]
  598. [ 2 3 4 ]
  599. [ ]
  600. [ 1 1 1 1 ]
  601. [--- --- --- ---]
  602. [ 2 3 4 5 ]
  603. [ ]
  604. [ 1 1 1 1 ]
  605. [--- --- --- ---]
  606. [ 3 4 5 6 ]
  607. [ ]
  608. [ 1 1 1 1 ]
  609. [--- --- --- ---]
  610. [ 4 5 6 7 ]
  611. hilbert(3,y+x);
  612. [ - 1 - 1 - 1 ]
  613. [----------- ----------- -----------]
  614. [ x + y - 2 x + y - 3 x + y - 4 ]
  615. [ ]
  616. [ - 1 - 1 - 1 ]
  617. [----------- ----------- -----------]
  618. [ x + y - 3 x + y - 4 x + y - 5 ]
  619. [ ]
  620. [ - 1 - 1 - 1 ]
  621. [----------- ----------- -----------]
  622. [ x + y - 4 x + y - 5 x + y - 6 ]
  623. jacobian({x^4,x*y^2,x*y*z^3},{w,x,y,z});
  624. [ 3 ]
  625. [0 4*x 0 0 ]
  626. [ ]
  627. [ 2 ]
  628. [0 y 2*x*y 0 ]
  629. [ ]
  630. [ 3 3 2]
  631. [0 y*z x*z 3*x*y*z ]
  632. jordan_block(x,5);
  633. [x 1 0 0 0]
  634. [ ]
  635. [0 x 1 0 0]
  636. [ ]
  637. [0 0 x 1 0]
  638. [ ]
  639. [0 0 0 x 1]
  640. [ ]
  641. [0 0 0 0 x]
  642. make_identity(11);
  643. [1 0 0 0 0 0 0 0 0 0 0]
  644. [ ]
  645. [0 1 0 0 0 0 0 0 0 0 0]
  646. [ ]
  647. [0 0 1 0 0 0 0 0 0 0 0]
  648. [ ]
  649. [0 0 0 1 0 0 0 0 0 0 0]
  650. [ ]
  651. [0 0 0 0 1 0 0 0 0 0 0]
  652. [ ]
  653. [0 0 0 0 0 1 0 0 0 0 0]
  654. [ ]
  655. [0 0 0 0 0 0 1 0 0 0 0]
  656. [ ]
  657. [0 0 0 0 0 0 0 1 0 0 0]
  658. [ ]
  659. [0 0 0 0 0 0 0 0 1 0 0]
  660. [ ]
  661. [0 0 0 0 0 0 0 0 0 1 0]
  662. [ ]
  663. [0 0 0 0 0 0 0 0 0 0 1]
  664. on rounded;
  665. % makes things a bit easier to read.
  666. random_matrix(3,3,100);
  667. [ - 8.11911717343 - 75.7167729277 30.62058083 ]
  668. [ ]
  669. [ - 50.0325962624 47.1655452861 35.8674263384 ]
  670. [ ]
  671. [ - 49.3715543826 - 97.5563670864 - 18.8861862756]
  672. on not_negative;
  673. random_matrix(3,3,100);
  674. [43.8999853223 33.7140980286 33.75065406 ]
  675. [ ]
  676. [49.7333355117 98.9642944905 58.5331568816]
  677. [ ]
  678. [39.9146060895 67.7954727837 24.8684367642]
  679. on only_integer;
  680. random_matrix(3,3,100);
  681. [16 77 49]
  682. [ ]
  683. [28 84 51]
  684. [ ]
  685. [84 56 57]
  686. on symmetric;
  687. random_matrix(3,3,100);
  688. [89 74 91]
  689. [ ]
  690. [74 95 41]
  691. [ ]
  692. [91 41 87]
  693. off symmetric;
  694. on upper_matrix;
  695. random_matrix(3,3,100);
  696. [41 3 8 ]
  697. [ ]
  698. [0 31 80]
  699. [ ]
  700. [0 0 12]
  701. off upper_matrix;
  702. on lower_matrix;
  703. random_matrix(3,3,100);
  704. [69 0 0 ]
  705. [ ]
  706. [34 87 0 ]
  707. [ ]
  708. [78 72 13]
  709. off lower_matrix;
  710. on imaginary;
  711. off not_negative;
  712. random_matrix(3,3,100);
  713. [ - 95*i - 72 - 57*i + 59 52*i + 46]
  714. [ ]
  715. [ - 40*i - 54 70*i 39*i + 28]
  716. [ ]
  717. [ - 40*i + 45 28*i - 81 9*i + 74 ]
  718. off rounded;
  719. % toeplitz and vandermonde can take both a list of arguments or just
  720. % the arguments.
  721. toeplitz({1,2,3,4,5});
  722. [1 2 3 4 5]
  723. [ ]
  724. [2 1 2 3 4]
  725. [ ]
  726. [3 2 1 2 3]
  727. [ ]
  728. [4 3 2 1 2]
  729. [ ]
  730. [5 4 3 2 1]
  731. toeplitz(x,y,z);
  732. [x y z]
  733. [ ]
  734. [y x y]
  735. [ ]
  736. [z y x]
  737. vandermonde({1,2,3,4,5});
  738. [1 1 1 1 1 ]
  739. [ ]
  740. [1 2 4 8 16 ]
  741. [ ]
  742. [1 3 9 27 81 ]
  743. [ ]
  744. [1 4 16 64 256]
  745. [ ]
  746. [1 5 25 125 625]
  747. vandermonde(x,y,z);
  748. [ 2]
  749. [1 x x ]
  750. [ ]
  751. [ 2]
  752. [1 y y ]
  753. [ ]
  754. [ 2]
  755. [1 z z ]
  756. % kronecker_product
  757. a1 := mat((1,2),(3,4),(5,6));
  758. [1 2]
  759. [ ]
  760. a1 := [3 4]
  761. [ ]
  762. [5 6]
  763. a2 := mat((1,x,1),(2,2,2),(3,3,3));
  764. [1 x 1]
  765. [ ]
  766. a2 := [2 2 2]
  767. [ ]
  768. [3 3 3]
  769. kronecker_product(a1,a2);
  770. [1 x 1 2 2*x 2 ]
  771. [ ]
  772. [2 2 2 4 4 4 ]
  773. [ ]
  774. [3 3 3 6 6 6 ]
  775. [ ]
  776. [3 3*x 3 4 4*x 4 ]
  777. [ ]
  778. [6 6 6 8 8 8 ]
  779. [ ]
  780. [9 9 9 12 12 12]
  781. [ ]
  782. [5 5*x 5 6 6*x 6 ]
  783. [ ]
  784. [10 10 10 12 12 12]
  785. [ ]
  786. [15 15 15 18 18 18]
  787. clear a1,a2;
  788. % High level algorithms.
  789. on rounded;
  790. % makes output easier to read.
  791. ch := cholesky(mat7);
  792. ch := {
  793. [1 0 0 ]
  794. [ ]
  795. [1 1.41421356237 0 ]
  796. [ ]
  797. [0 0.707106781187 0.707106781187]
  798. ,
  799. [1 1 0 ]
  800. [ ]
  801. [0 1.41421356237 0.707106781187]
  802. [ ]
  803. [0 0 0.707106781187]
  804. }
  805. tp first ch - second ch;
  806. [0 0 0]
  807. [ ]
  808. [0 0 0]
  809. [ ]
  810. [0 0 0]
  811. tmp := first ch * second ch;
  812. [1 1 0]
  813. [ ]
  814. tmp := [1 3.0 1]
  815. [ ]
  816. [0 1 1]
  817. tmp - mat7;
  818. [0 0 0]
  819. [ ]
  820. [0 0 0]
  821. [ ]
  822. [0 0 0]
  823. off rounded;
  824. gram_schmidt({1,0,0},{1,1,0},{1,1,1});
  825. {{1,0,0},{0,1,0},{0,0,1}}
  826. gram_schmidt({1,2},{3,4});
  827. 1 2 2*sqrt(5) - sqrt(5)
  828. {{---------,---------},{-----------,------------}}
  829. sqrt(5) sqrt(5) 5 5
  830. on rounded;
  831. % again, makes large quotients a bit more readable.
  832. % The algorithm used for lu_decom sometimes swaps the rows of the input
  833. % matrix so that (given matrix A, lu_decom(A) = {L,U,vec}), we find L*U
  834. % does not equal A but a row equivalent of it. The call convert(A,vec)
  835. % will return this row equivalent (ie: L*U = convert(A,vec)).
  836. lu := lu_decom(mat5);
  837. lu := {
  838. [4 0 0 0 ]
  839. [ ]
  840. [1 0.75 0 0 ]
  841. [ ]
  842. [1 0.75 2.0 0 ]
  843. [ ]
  844. [3 0.25 4.0 4.33333333333]
  845. ,
  846. [1 1.25 0.25 0.5 ]
  847. [ ]
  848. [0 1 1 0.666666666667]
  849. [ ]
  850. [0 0 1 0 ]
  851. [ ]
  852. [0 0 0 1 ]
  853. ,
  854. [3,3,3,4]}
  855. mat5;
  856. [1 2 1 1]
  857. [ ]
  858. [1 2 3 1]
  859. [ ]
  860. [4 5 1 2]
  861. [ ]
  862. [3 4 5 6]
  863. tmp := first lu * second lu;
  864. [4 5.0 1 2.0]
  865. [ ]
  866. [1 2.0 1 1 ]
  867. tmp := [ ]
  868. [1 2.0 3.0 1 ]
  869. [ ]
  870. [3 4.0 5.0 6.0]
  871. tmp1 := convert(mat5,third lu);
  872. [4 5 1 2]
  873. [ ]
  874. [1 2 1 1]
  875. tmp1 := [ ]
  876. [1 2 3 1]
  877. [ ]
  878. [3 4 5 6]
  879. tmp - tmp1;
  880. [0 0 0 0]
  881. [ ]
  882. [0 0 0 0]
  883. [ ]
  884. [0 0 0 0]
  885. [ ]
  886. [0 0 0 0]
  887. % and the complex case...
  888. lu1 := lu_decom(mat6);
  889. lu1 := {
  890. [ 1 0 0 ]
  891. [ ]
  892. [ 4 - 4*i + 5 0 ]
  893. [ ]
  894. [i + 1 3 0.414634146341*i + 2.26829268293]
  895. ,
  896. [1 i 0 ]
  897. [ ]
  898. [0 1 0.19512195122*i + 0.243902439024]
  899. [ ]
  900. [0 0 1 ]
  901. ,
  902. [3,2,3]}
  903. mat6;
  904. [i + 1 i + 2 i + 3]
  905. [ ]
  906. [ 4 5 2 ]
  907. [ ]
  908. [ 1 i 0 ]
  909. tmp := first lu1 * second lu1;
  910. [ 1 i 0 ]
  911. [ ]
  912. tmp := [ 4 5 2.0 ]
  913. [ ]
  914. [i + 1 i + 2 i + 3.0]
  915. tmp1 := convert(mat6,third lu1);
  916. [ 1 i 0 ]
  917. [ ]
  918. tmp1 := [ 4 5 2 ]
  919. [ ]
  920. [i + 1 i + 2 i + 3]
  921. tmp - tmp1;
  922. [0 0 0]
  923. [ ]
  924. [0 0 0]
  925. [ ]
  926. [0 0 0]
  927. mat9inv := pseudo_inverse(mat9);
  928. [ - 0.199999999996 0.100000000013 ]
  929. [ ]
  930. [ - 0.0499999999988 0.0500000000037 ]
  931. mat9inv := [ ]
  932. [ 0.0999999999982 - 5.57816640101e-12]
  933. [ ]
  934. [ 0.249999999995 - 0.0500000000148 ]
  935. mat9 * mat9inv;
  936. [ 0.999999999982 - 0.0000000000557817125824]
  937. [ ]
  938. [5.54201129432e-12 1.00000000002 ]
  939. simplex(min,2*x1+14*x2+36*x3,{-2*x1+x2+4*x3>=5,-x1-2*x2-3*x3<=2});
  940. {45.0,{x1=0,x2=0,x3=1.25}}
  941. simplex(max,10000 x1 + 1000 x2 + 100 x3 + 10 x4 + x5,{ x1 <= 1, 20 x1 +
  942. x2 <= 100, 200 x1 + 20 x2 + x3 <= 10000, 2000 x1 + 200 x2 + 20 x3 + x4
  943. <= 1000000, 20000 x1 + 2000 x2 + 200 x3 + 20 x4 + x5 <= 100000000});
  944. {100000000,{x1=0,x2=0,x3=0,x4=0,x5=100000000.0}}
  945. simplex(max, 5 x1 + 4 x2 + 3 x3,
  946. { 2 x1 + 3 x2 + x3 <= 5,
  947. 4 x1 + x2 + 2 x3 <= 11,
  948. 3 x1 + 4 x2 + 2 x3 <= 8 });
  949. {13.0,{x1=2.0,x2=0,x3=1.0}}
  950. simplex(min,3 x1 + 5 x2,{ x1 + 2 x2 >= 2, 22 x1 + x2 >= 3});
  951. {5.04651162791,{x1=0.093023255813953,x2=0.95348837209302}}
  952. simplex(max,10x+5y+5.5z,{5x+3z<=200,0.2x+0.1y+0.5z<=12,0.1x+0.2y+0.3z<=9,
  953. 30x+10y+50z<=1500});
  954. {525.0,{x=40.0,y=25.0,z=0}}
  955. %example of extra variables (>=0) being added.
  956. simplex(min,x-y,{x>=-3});
  957. *** Warning: variable y not defined in input. Has been defined as >=0.
  958. ***** Error in simplex: The problem is unbounded.
  959. % unfeasible as simplex algorithm implies all x>=0.
  960. simplex(min,x,{x<=-100});
  961. ***** Error in simplex: Problem has no feasible solution.
  962. % three error examples.
  963. simplex(maxx,x,{x>=5});
  964. ***** Error in simplex(first argument): must be either max or min.
  965. simplex(max,x,x>=5);
  966. ***** Error in simplex(third argument}: must be a list.
  967. simplex(max,x,{x<=y});
  968. ***** Error in simplex(third argument):
  969. ***** right hand side of each inequality must be a number
  970. simplex(max, 346 X11 + 346 X12 + 248 X21 + 248 X22 + 399 X31 + 399 X32 +
  971. 200 Y11 + 200 Y12 + 75 Y21 + 75 Y22 + 2.35 Z1 + 3.5 Z2,
  972. {
  973. 4 X11 + 4 X12 + 2 X21 + 2 X22 + X31 + X32 + 250 Y11 + 250 Y12 + 125 Y21 +
  974. 125 Y22 <= 25000,
  975. X11 + X12 + X21 + X22 + X31 + X32 + 2 Y11 + 2 Y12 + Y21 + Y22 <= 300,
  976. 20 X11 + 15 X12 + 30 Y11 + 20 Y21 + Z1 <= 1500,
  977. 40 X12 + 35 X22 + 50 X32 + 15 Y12 + 10 Y22 + Z2 = 5000,
  978. X31 = 0,
  979. Y11 + Y12 <= 50,
  980. Y21 + Y22 <= 100
  981. });
  982. {99250.0,
  983. {y21=0,
  984. y22=0,
  985. x31=0,
  986. x11=75.0,
  987. z1=0,
  988. x21=225.0,
  989. z2=5000.0,
  990. x32=0,
  991. x22=0,
  992. x12=0,
  993. y12=0,
  994. y11=0}}
  995. % from Marc van Dongen. Finding the first feasible solution for the
  996. % solution of systems of linear diophantine inequalities.
  997. simplex(max,0,{
  998. 3*X259+4*X261+3*X262+2*X263+X269+2*X270+3*X271+4*X272+5*X273+X229=2,
  999. 7*X259+11*X261+8*X262+5*X263+3*X269+6*X270+9*X271+12*X272+15*X273+X229=4,
  1000. 2*X259+5*X261+4*X262+3*X263+3*X268+4*X269+5*X270+6*X271+7*X272+8*X273=1,
  1001. X262+2*X263+5*X268+4*X269+3*X270+2*X271+X272+2*X229=1,
  1002. X259+X262+2*X263+4*X268+3*X269+2*X270+X271-X273+3*X229=2,
  1003. X259+2*X261+2*X262+2*X263+3*X268+3*X269+3*X270+3*X271+3*X272+3*X273+X229=1,
  1004. X259+X261+X262+X263+X268+X269+X270+X271+X272+X273+X229=1});
  1005. {0,
  1006. {x229=0.5,
  1007. x259=0.5,
  1008. x261=0,
  1009. x262=0,
  1010. x263=0,
  1011. x268=0,
  1012. x269=0,
  1013. x270=0,
  1014. x271=0,
  1015. x272=0,
  1016. x273=0}}
  1017. svd_ans := svd(mat8);
  1018. svd_ans := {
  1019. [ 0.289784137735 0.957092029805]
  1020. [ ]
  1021. [ - 0.957092029805 0.289784137735]
  1022. ,
  1023. [5.1491628629 0 ]
  1024. [ ]
  1025. [ 0 2.9130948854]
  1026. ,
  1027. [ - 0.687215403194 0.726453707825 ]
  1028. [ ]
  1029. [ - 0.726453707825 - 0.687215403194]
  1030. }
  1031. tmp := tp first svd_ans * second svd_ans * third svd_ans;
  1032. [ 0.99999998509 2.9999999859 ]
  1033. tmp := [ ]
  1034. [ - 4.00000004924 2.99999995342]
  1035. tmp - mat8;
  1036. [ - 0.0000000149096008872 - 0.0000000141042817425]
  1037. [ ]
  1038. [ - 0.0000000492430629606 - 0.0000000465832750152]
  1039. mat9inv := pseudo_inverse(mat9);
  1040. [ - 0.199999999996 0.100000000013 ]
  1041. [ ]
  1042. [ - 0.0499999999988 0.0500000000037 ]
  1043. mat9inv := [ ]
  1044. [ 0.0999999999982 - 5.57816640101e-12]
  1045. [ ]
  1046. [ 0.249999999995 - 0.0500000000148 ]
  1047. mat9 * mat9inv;
  1048. [ 0.999999999982 - 0.0000000000557817125824]
  1049. [ ]
  1050. [5.54201129432e-12 1.00000000002 ]
  1051. % triang_adjoint(in_mat) calculates the
  1052. % triangularizing adjoint of in_mat
  1053. triang_adjoint(mat1);
  1054. [1 0 0 0 0]
  1055. [ ]
  1056. [-2 1 0 0 0]
  1057. [ ]
  1058. [-1 2 -1 0 0]
  1059. [ ]
  1060. [0 0 0 0 0]
  1061. [ ]
  1062. [0 0 0 0 0]
  1063. triang_adjoint(mat2);
  1064. [1 0 0 0]
  1065. [ ]
  1066. [-2 1 0 0]
  1067. [ ]
  1068. [0 0 0 0]
  1069. [ ]
  1070. [0 0 0 0]
  1071. triang_adjoint(mat5);
  1072. [1 0 0 0]
  1073. [ ]
  1074. [-1 1 0 0]
  1075. [ ]
  1076. [-3 3 0 0]
  1077. [ ]
  1078. [10 -12 -4 6]
  1079. triang_adjoint(mat6);
  1080. [ 1 0 0 ]
  1081. [ ]
  1082. [ -4 i + 1 0 ]
  1083. [ ]
  1084. [4*i - 5 3 i - 3]
  1085. triang_adjoint(mat7);
  1086. [1 0 0]
  1087. [ ]
  1088. [-1 1 0]
  1089. [ ]
  1090. [1 - 1 2]
  1091. triang_adjoint(mat8);
  1092. [1 0]
  1093. [ ]
  1094. [4 1]
  1095. triang_adjoint(mat9);
  1096. ***** Error in triang_adjoint: input matrix should be square.
  1097. % testing triang_adjoint with random matrices
  1098. % the range of the integers is in one case from
  1099. % -1000 to 1000. in the other case it is from
  1100. % -1 to 1 so that the deteminant of the i-th
  1101. % submatrix equals very often to zero.
  1102. % random matrix contains arbitrary real values
  1103. off only_integer;
  1104. tmp:=random_matrix(5,5,1000);
  1105. tmp := mat(( - 558.996086656*i + 1.71931812953,76.9987188735*i + 1.19004104683,
  1106. - 739.283479439*i - 1.32534106204,742.101952123*i + 1.35926854848,
  1107. 680.515777254*i + 1.56403177895),
  1108. ( - 689.196170962*i + 1.49289170118,
  1109. - 232.584493916*i - 1.38227180395,280.109305836*i + 1.38865247861,
  1110. 298.151479065*i - 1.19035182389, - 602.312143386*i - 1.82183796879),
  1111. ( - 739.195910955*i - 1.45944960213,859.293884826*i + 1.70488070379,
  1112. 359.856032683*i - 1.2966991869, - 105.409833087*i - 1.9360631701,
  1113. 234.350529301*i - 1.15598520849),
  1114. (155.629059348*i + 1.09264385739, - 16.1559469072*i - 1.9425176505,
  1115. 725.11578405*i - 1.05760723025,783.020942195*i - 1.28625265346,
  1116. - 544.129360355*i + 1.74790906085),
  1117. (373.562370318*i - 1.95218354686, - 722.109349973*i + 1.56309793677,
  1118. - 746.664959169*i - 1.9915755693,186.154794517*i - 1.09842189916,
  1119. 435.90998986*i - 1.46175649496))
  1120. triang_adjoint tmp;
  1121. mat((1,0,0,0,0),
  1122. (689.196170962*i - 1.49289170118, - 558.996086656*i + 1.71931812953,0,0,0),
  1123. ( - 1253.37955588*i + 7.64148089854e+5, - 1516.42713845*i - 4.23429448803e+5
  1124. ,1078.01877642*i - 1.830851973e+5,0,0),
  1125. 102791325687.0*i + 7.3752778526e+8
  1126. (------------------------------------,
  1127. i - 169.834887206
  1128. - 3.66748178757e+10*i - 6.62162769101e+6
  1129. -------------------------------------------,
  1130. i - 169.834887206
  1131. 9.85957444629e+7*i - 1.01033337718e+6,
  1132. - 7.49414742893e+8*i - 2.25311577415e+6,0),
  1133. - 547052849318.0*i + 4.06181988045e+13
  1134. (-----------------------------------------,
  1135. i - 112.974983172
  1136. - 141265342333.0*i + 4.13350560163e+12
  1137. -----------------------------------------,
  1138. i - 112.974983172
  1139. 845804392649.0*i - 9.62488227345e+13
  1140. --------------------------------------,
  1141. i - 112.974983172
  1142. 876106032577.0*i - 2.66464796763e+13
  1143. --------------------------------------,
  1144. i - 112.974983172
  1145. 1.47617976407e+12*i - 1.66771384004e+14
  1146. -----------------------------------------))
  1147. i - 169.834887206
  1148. tmp:=random_matrix(1,1,1000);
  1149. tmp := [ - 463.860434427*i + 1.35500571348]
  1150. triang_adjoint tmp;
  1151. [1]
  1152. % random matrix contains complex real values
  1153. on imaginary;
  1154. tmp:=random_matrix(5,5,1000);
  1155. tmp := mat((107.345792105*i - 1.98704739339,188.868545358*i + 1.22417796742,
  1156. - 630.485915434*i + 1.32195292724,
  1157. - 542.510039297*i - 1.94318764036,359.860945563*i - 1.69174206177),
  1158. ( - 469.501213476*i - 1.17375946319, - 62.2197820375*i - 1.4051578261
  1159. , - 98.6604380996*i + 1.64691610034,
  1160. - 216.296595937*i + 1.56809020199,797.19877393*i - 1.31894550853),
  1161. (2.07054207792*i + 1.3891068942,393.038868455*i - 1.60894498437,
  1162. - 215.390393738*i - 1.00068640594,
  1163. - 195.674928032*i + 1.22123114986,211.921323796*i - 1.42499533273),
  1164. ( - 750.357435524*i - 1.19871674827,
  1165. - 792.333836712*i - 1.63151974094, - 494.87049225*i + 1.99554801527
  1166. ,638.173945822*i + 1.23793954612,111.418959978*i - 1.96273029328),
  1167. ( - 255.359922267*i + 1.99035939892,
  1168. - 575.376389757*i - 1.03533681609,463.961589382*i - 1.86476410547,
  1169. 83.8856338571*i + 1.10369785887, - 129.597812786*i - 1.4917934624))
  1170. triang_adjoint tmp;
  1171. mat((1,0,0,0,0),
  1172. (469.501213476*i + 1.17375946319,107.345792105*i - 1.98704739339,0,0,0),
  1173. (383.407897912*i + 1.84407237435e+5,1218.59364331*i + 41798.5118562,
  1174. 769.235159465*i - 81990.7504399,0,0),
  1175. - 1.411092405e+10*i - 1.91497165215e+8
  1176. (-----------------------------------------,
  1177. i - 106.587367245
  1178. - 2.06157034475e+10*i + 1.09218575639e+8
  1179. -------------------------------------------,
  1180. i - 106.587367245
  1181. - 2.4008888901e+8*i + 13175.2571592,
  1182. - 1.02728261373e+8*i + 9.22309484944e+5,0),
  1183. - 203213290519.0*i - 3.07405185302e+12
  1184. (-----------------------------------------,
  1185. i - 184.764270765
  1186. 311149245317.0*i + 2.05618234856e+13
  1187. --------------------------------------,
  1188. i - 184.764270765
  1189. 212889617996.0*i - 4.13210409411e+13
  1190. --------------------------------------,
  1191. i - 184.764270765
  1192. - 7.79955805661e+10*i - 5.10418442965e+12
  1193. --------------------------------------------,
  1194. i - 184.764270765
  1195. 7.62835257557e+10*i - 1.40944700076e+13
  1196. -----------------------------------------))
  1197. i - 106.587367245
  1198. tmp:=random_matrix(1,1,1000);
  1199. tmp := [276.278111177*i + 1.74724262616]
  1200. triang_adjoint tmp;
  1201. [1]
  1202. off imaginary;
  1203. % random matrix contains rounded real values
  1204. on rounded;
  1205. tmp:=random_matrix(5,5,1000);
  1206. tmp := mat(( - 293.224093687, - 99.023221037, - 819.400851656,796.020234589,
  1207. 593.862087611),
  1208. ( - 137.84203019,354.3234619, - 852.314261681, - 217.485901759,
  1209. 256.139775139),
  1210. (324.37828726, - 56.5718498235, - 118.293003834,108.279501424,
  1211. 23.2385400299),
  1212. ( - 976.556156754,684.207160793,146.328625386,502.848132905,
  1213. 312.766816689),
  1214. (211.783458501,166.556239469,175.715904944,251.57997022,280.123720131
  1215. ))
  1216. triang_adjoint tmp;
  1217. mat((1,0,0,0,0),
  1218. (137.84203019, - 293.224093687,0,0,0),
  1219. ( - 1.07136859076e+5, - 48709.2122316, - 1.17545737812e+5,0,0),
  1220. (1.27980020917e+8, - 1.64635380167e+8,4.76863677307e+8,1.43208428244e+8,0),
  1221. (5.82963241185e+10,3.9383738062e+10, - 437637051137.0, - 111757830528.0,
  1222. 261327212376.0))
  1223. tmp:=random_matrix(1,1,1000);
  1224. tmp := [406.584701921]
  1225. triang_adjoint tmp;
  1226. [1]
  1227. off rounded;
  1228. % random matrix contains only integer values
  1229. on only_integer;
  1230. tmp:=random_matrix(7,7,1000);
  1231. [969 210 8 244 -887 -39 -916]
  1232. [ ]
  1233. [-774 296 -475 -694 -909 560 89 ]
  1234. [ ]
  1235. [-390 -559 -551 -567 241 -306 -655]
  1236. [ ]
  1237. tmp := [-478 809 181 -987 -144 929 -886]
  1238. [ ]
  1239. [188 267 -778 660 374 590 30 ]
  1240. [ ]
  1241. [ 73 971 -946 -43 -215 386 -365]
  1242. [ ]
  1243. [-792 -852 558 -797 343 219 110 ]
  1244. triang_adjoint tmp;
  1245. mat((1,0,0,0,0,0,0),
  1246. (774,969,0,0,0,0,0),
  1247. (548106,459771,449364,0,0,0,0),
  1248. (-108937808,399369604,-497500435,-461605941,0,0,0),
  1249. (-386678984240,-1001551613816,454549593485,637690866447,433944480084,0,0),
  1250. (-604165739229705,-320961967400919,-165015285307395,-1008712187269380,
  1251. -1670995725485274,1433408878792557,0),
  1252. (-181830640557070260,295390292387079435,816541226477288004,
  1253. 850494616785589377,458176543109779557,-1709784109660828152,
  1254. -1475366833406131953))
  1255. tmp:=random_matrix(7,7,1);
  1256. [0 0 0 0 0 0 0]
  1257. [ ]
  1258. [0 0 0 0 0 0 0]
  1259. [ ]
  1260. [0 0 0 0 0 0 0]
  1261. [ ]
  1262. tmp := [0 0 0 0 0 0 0]
  1263. [ ]
  1264. [0 0 0 0 0 0 0]
  1265. [ ]
  1266. [0 0 0 0 0 0 0]
  1267. [ ]
  1268. [0 0 0 0 0 0 0]
  1269. triang_adjoint tmp;
  1270. [1 0 0 0 0 0 0]
  1271. [ ]
  1272. [0 0 0 0 0 0 0]
  1273. [ ]
  1274. [0 0 0 0 0 0 0]
  1275. [ ]
  1276. [0 0 0 0 0 0 0]
  1277. [ ]
  1278. [0 0 0 0 0 0 0]
  1279. [ ]
  1280. [0 0 0 0 0 0 0]
  1281. [ ]
  1282. [0 0 0 0 0 0 0]
  1283. % random matrix contains only complex integer
  1284. % values
  1285. on imaginary;
  1286. tmp:=random_matrix(5,5,1000);
  1287. tmp := mat((12*(38*i + 83),3*(153*i - 305),2*(141*i + 427), - 553*i + 617,
  1288. 3*(83*i + 157)),
  1289. (164*i - 635, - 133*i + 991, - 373*i + 210,965*i - 608,2*(358*i - 55)
  1290. ),
  1291. ( - 230*i + 227,32*i + 339,2*(485*i - 219),707*i - 767, - 985*i - 51)
  1292. ,
  1293. ( - 609*i + 647, - 441*i + 187,930*i - 349,250*i - 211,274*i - 451),
  1294. ( - 374*i - 135,793*i + 592, - 81*i - 1,89*i + 26,3*( - 40*i + 201)))
  1295. triang_adjoint tmp;
  1296. mat((1,0,0,0,0),
  1297. ( - 164*i + 635,12*(38*i + 83),0,0,0),
  1298. (293397*i - 414880,9*(14243*i - 47243),3*(253651*i + 180645),0,0),
  1299. - 253324472288717*i + 71265413812547
  1300. (---------------------------------------,
  1301. 253651*i + 180645
  1302. 2*( - 220885726602145*i - 1441709355714)
  1303. ------------------------------------------, - 1436348339*i + 1393250309,
  1304. 253651*i + 180645
  1305. 511458435*i - 1454012933,0),
  1306. 13983048003979950612955437881*i - 71498490838832832842693585028
  1307. (-----------------------------------------------------------------,
  1308. 65634686423804933*i - 9174596297286164
  1309. 89295323223054915316808489269*i - 37624299403809895760446255007
  1310. -----------------------------------------------------------------,
  1311. 65634686423804933*i - 9174596297286164
  1312. 2*( - 71881165390656818494884812727*i - 25318671134083617432051412624)
  1313. ------------------------------------------------------------------------,
  1314. 65634686423804933*i - 9174596297286164
  1315. 134577377248105484011524135103*i + 3495516738012600790097438251
  1316. -----------------------------------------------------------------,
  1317. 65634686423804933*i - 9174596297286164
  1318. 6*(65634686423804933*i - 9174596297286164)
  1319. --------------------------------------------))
  1320. 253651*i + 180645
  1321. tmp:=random_matrix(5,5,2);
  1322. [i - 1 i i 0 - (i + 1)]
  1323. [ ]
  1324. [ 0 i -1 - i + 1 i + 1 ]
  1325. [ ]
  1326. tmp := [ -1 0 0 - i + 1 -1 ]
  1327. [ ]
  1328. [ -1 - i - i - i i + 1 ]
  1329. [ ]
  1330. [i - 1 0 i + 1 -1 0 ]
  1331. triang_adjoint tmp;
  1332. [ 1 0 0 0 0 ]
  1333. [ ]
  1334. [ 0 i - 1 0 0 0 ]
  1335. [ ]
  1336. [ - (i + 1) i + 1 ]
  1337. [------------ ------- - (i + 1) 0 0 ]
  1338. [ i - 1 i - 1 ]
  1339. [ ]
  1340. [ - (i + 1) 2*(2*i + 1) - 2*i ]
  1341. [------------ 0 ------------- -------- 0 ]
  1342. [ i i - 1 i - 1 ]
  1343. [ ]
  1344. [ 2*(3*i - 4) 2*(i + 2) 5*(3*i + 1) - 7*i + 1 2*(i + 2) ]
  1345. [------------- ----------- ------------- ------------ -----------]
  1346. [ 4*i + 3 i - 1 4*i + 3 4*i + 3 i - 1 ]
  1347. % Predicates.
  1348. matrixp(mat1);
  1349. t
  1350. matrixp(poly);
  1351. squarep(mat2);
  1352. t
  1353. squarep(mat3);
  1354. symmetricp(mat1);
  1355. t
  1356. symmetricp(mat3);
  1357. if not rounded_was_on then off rounded;
  1358. END;
  1359. Time for test: 7080 ms