123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258 |
- Sun Aug 18 16:52:26 2002 run on Windows
- % test file for the Lie package
- % 1. n-dimensional Lie algebras with dimL1=1
- % n=6
- array lienstrucin(6,6,6)$
- lienstrucin(1,2,2):=lienstrucin(1,2,6):=lienstrucin(1,5,2):=-1$
- lienstrucin(1,5,6):=lienstrucin(2,5,3):=lienstrucin(2,5,5):=-1$
- lienstrucin(1,2,3):=lienstrucin(1,2,5):=lienstrucin(1,5,3):=1$
- lienstrucin(1,5,5):=lienstrucin(2,5,2):=lienstrucin(2,5,6):=1$
- liendimcom1(6);
- {lie_algebra(2),commutative(4)}
- % transformation matrix
- lientrans;
- [0 -1 1 0 1 -1]
- [ ]
- [0 1 0 0 0 0 ]
- [ ]
- [1 1 -1 0 -1 1 ]
- [ ]
- [0 0 0 1 0 0 ]
- [ ]
- [0 0 -1 0 0 1 ]
- [ ]
- [0 0 0 0 0 1 ]
- clear lienstrucin$
- % n=8
- array lienstrucin(8,8,8)$
- lienstrucin(1,2,2):=lienstrucin(1,5,2):=lienstrucin(2,4,3):=1$
- lienstrucin(2,4,5):=lienstrucin(4,5,2):=1$
- lienstrucin(1,2,3):=lienstrucin(1,2,5):=lienstrucin(1,5,3):=-1$
- lienstrucin(1,5,5):=lienstrucin(2,4,2):=lienstrucin(4,5,3):=-1$
- lienstrucin(4,5,5):=-1$
- lienstrucin(1,2,6):=lienstrucin(1,5,6):=lienstrucin(4,5,6):=5$
- lienstrucin(2,4,6):=-5$
- liendimcom1(8);
- {heisenberg(3),commutative(5)}
- % same with verbose output
- on tr_lie$
- liendimcom1(8);
- Your Lie algebra is the direct sum of the Lie algebra H(3)
- and the 5-dimensional commutative Lie algebra, where
- H(3) is 3-dimensional and there exists a basis
- {X(1),...,X(3)} in H(3) with:
- [X(2),X(3)]=[X(2*i),X(2*i+1)]=...=[X(2),X(3)]=X(1)
- The transformation into this form is:
- X(1):=5*y(6) - y(5) - y(3) + y(2)
- X(2):=y(1)
- X(3):=y(2)
- X(4):=y(4) - y(1)
- X(5):=y(5) - y(2)
- X(6):=y(6)
- X(7):=y(7)
- X(8):=y(8)
- {heisenberg(3),commutative(5)}
- clear lienstrucin$
- off tr_lie$
- % 2. 4-dimensional Lie algebras
- % Korteweg-de Vries Equation: u_t+u_{xxx}+uu_x=0
- % symmetry algebra spanned by four vector fields:
- % v_1=d_x, v_2=d_t, v_3=td_x+d_u, v_4=xd_x+3td_t-2ud_u
- array liestrin(4,4,4)$
- liestrin(1,4,1):=liestrin(2,3,1):=1$
- liestrin(2,4,2):=3$
- liestrin(3,4,3):=-2$
- lieclass(4);
- {liealg(4),comtab(16),5}
- clear liestrin$
- % dimL1=3, dimL2=3
- array liestrin(4,4,4)$
- liestrin(1,2,1):=-6$
- liestrin(1,2,3):=-2$
- liestrin(1,2,4):=6$
- liestrin(1,3,1):=-1$
- liestrin(1,3,2):=1$
- liestrin(1,3,4):=1$
- liestrin(2,3,1):=-3$
- liestrin(2,3,4):=2$
- liestrin(2,4,1):=6$
- liestrin(2,4,3):=2$
- liestrin(2,4,4):=-6$
- liestrin(3,4,1):=1$
- liestrin(3,4,2):=-1$
- liestrin(3,4,4):=-1$
- lieclass(4);
- {liealg(4),comtab(21)}
- % same with verbose output
- on tr_lie$
- lieclass(4);
- [W,X]=Y, [W,Y]=-X, [X,Y]=W
- {liealg(4),comtab(21)}
- % transformation matrix
- liemat;
- [ 3 0 1 -3 ]
- [ ]
- [ - 3 2 ]
- [--------- 0 0 ---------]
- [ sqrt(2) sqrt(2) ]
- [ ]
- [ - 1 1 1 ]
- [--------- --------- 0 ---------]
- [ sqrt(2) sqrt(2) sqrt(2) ]
- [ ]
- [ -2 0 0 2 ]
- clear liestrin$
- off tr_lie$
- end$
- Time for test: 10144 ms
|