123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643 |
- /* arith12.c Copyright (C) 1990-2002 Codemist Ltd */
- /*
- * Arithmetic functions... specials for Reduce (esp. factoriser)
- *
- */
- /*
- * This code may be used and modified, and redistributed in binary
- * or source form, subject to the "CCL Public License", which should
- * accompany it. This license is a variant on the BSD license, and thus
- * permits use of code derived from this in either open and commercial
- * projects: but it does require that updates to this code be made
- * available back to the originators of the package.
- * Before merging other code in with this or linking this code
- * with other packages or libraries please check that the license terms
- * of the other material are compatible with those of this.
- */
- /* Signature: 0d21727a 08-Apr-2002 */
- #define FP_EVALUATE 1
- #include <stdarg.h>
- #include <string.h>
- #include <ctype.h>
- #include <math.h>
- #include "machine.h"
- #include "tags.h"
- #include "cslerror.h"
- #include "externs.h"
- #include "arith.h"
- #include "entries.h"
- #ifdef TIMEOUT
- #include "timeout.h"
- #endif
- Lisp_Object Lfrexp(Lisp_Object nil, Lisp_Object a)
- {
- double d;
- int x;
- d = float_of_number(a);
- d = frexp(d, &x);
- if (d == 1.0) d = 0.5, x++;
- a = make_boxfloat(d, TYPE_DOUBLE_FLOAT);
- errexit();
- return Lcons(nil, fixnum_of_int((int32)x), a);
- }
- Lisp_Object Lmodular_difference(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- int32 r;
- CSL_IGNORE(nil);
- r = int_of_fixnum(a) - int_of_fixnum(b);
- if (r < 0) r += current_modulus;
- return onevalue(fixnum_of_int(r));
- }
- Lisp_Object Lmodular_minus(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- if (a != fixnum_of_int(0))
- { int32 r = current_modulus - int_of_fixnum(a);
- a = fixnum_of_int(r);
- }
- return onevalue(a);
- }
- Lisp_Object Lmodular_number(Lisp_Object nil, Lisp_Object a)
- {
- int32 r;
- a = Cremainder(a, fixnum_of_int(current_modulus));
- errexit();
- r = int_of_fixnum(a);
- if (r < 0) r += current_modulus;
- return onevalue(fixnum_of_int(r));
- }
- Lisp_Object Lmodular_plus(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- int32 r;
- CSL_IGNORE(nil);
- r = int_of_fixnum(a) + int_of_fixnum(b);
- if (r >= current_modulus) r -= current_modulus;
- return onevalue(fixnum_of_int(r));
- }
- Lisp_Object Lmodular_reciprocal(Lisp_Object nil, Lisp_Object n)
- {
- int32 a, b, x, y;
- CSL_IGNORE(nil);
- a = current_modulus;
- b = int_of_fixnum(n);
- x = 0;
- y = 1;
- if (b == 0) return aerror1("modular-reciprocal", n);
- while (b != 1)
- { int32 w = a / b;
- int32 t = b;
- b = a - b*w;
- a = t;
- t = y;
- y = x - y*w;
- x = t;
- }
- if (y < 0) y += current_modulus;
- return onevalue(fixnum_of_int(y));
- }
- Lisp_Object Lmodular_times(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- unsigned32 h, l, r, cm;
- int32 aa, bb;
- CSL_IGNORE(nil);
- cm = (unsigned32)current_modulus;
- aa = int_of_fixnum(a);
- bb = int_of_fixnum(b);
- /*
- * The constant 46341 is sqrt(2^31) suitable rounded - if my modulus
- * is no bigger than that then a and b will both be strictly smaller,
- * and hence a*b will be < 2^31 and hence in range for 32-bit signed
- * arithmetic. I make this test because I expect Imultiply and Idivide
- * to be pretty painful, while regular C multiplication and division are
- * (probably!) much better.
- */
- if (cm <= 46341U) r = (aa * bb) % cm;
- else
- {
- #ifdef MULDIV64
- r = (unsigned32)(((unsigned64)aa * (unsigned64)bb) % (unsigned32)cm);
- #else
- Dmultiply(h, l, aa, bb, 0);
- Ddivide(r, l, h, l, cm);
- #endif
- }
- return onevalue(fixnum_of_int(r));
- }
- Lisp_Object Lmodular_quotient(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- push(a);
- b = Lmodular_reciprocal(nil, b);
- pop(a);
- errexit();
- return Lmodular_times(nil, a, b);
- }
- Lisp_Object Lmodular_expt(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- int32 x, r, p;
- unsigned32 h, l;
- CSL_IGNORE(nil);
- x = int_of_fixnum(b);
- if (x == 0) return onevalue(fixnum_of_int(1));
- p = int_of_fixnum(a);
- /*
- * I could play games here on half-length current_modulus and use
- * native C arithmetic, but I judge this case not to be quite that
- * critically important. Also on 64-bit machines I could do more
- * work in-line.
- */
- p = p % current_modulus; /* In case somebody is being silly! */
- while ((x & 1) == 0)
- { Dmultiply(h, l, p, p, 0);
- Ddivide(p, l, h, l, current_modulus);
- x = x/2;
- }
- r = p;
- while (x != 1)
- { Dmultiply(h, l, p, p, 0);
- Ddivide(p, l, h, l, current_modulus);
- x = x/2;
- if ((x & 1) != 0)
- { Dmultiply(h, l, r, p, 0);
- Ddivide(r, l, h, l, current_modulus);
- }
- }
- return onevalue(fixnum_of_int(r));
- }
- Lisp_Object Lset_small_modulus(Lisp_Object nil, Lisp_Object a)
- {
- int32 r, old = current_modulus;
- CSL_IGNORE(nil);
- if (!is_fixnum(a)) return aerror1("set-small-modulus", a);
- r = int_of_fixnum(a);
- /*
- * I COULD allow a small modulus of up to 2^27, but for compatibility
- * with Cambridge Lisp I will limit myself to 24 bits.
- */
- if (r > 0x00ffffff) return aerror1("set-small-modulus", a);
- current_modulus = r;
- return onevalue(fixnum_of_int(old));
- }
- Lisp_Object Liadd1(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a)) return aerror1("iadd1", a);
- return onevalue((Lisp_Object)((int32)a + 0x10));
- }
- Lisp_Object Lidifference(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("idifference", a, b);
- return onevalue((Lisp_Object)((int32)a - (int32)b + TAG_FIXNUM));
- }
- /*
- * xdifference is provided just for the support of the CASE operator. It
- * subtracts its arguments but returns NIL if either argument is not
- * an small integer or if the result overflows.
- */
- Lisp_Object Lxdifference(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- int32 r;
- if (!is_fixnum(a) || !is_fixnum(b)) return onevalue(nil);
- r = int_of_fixnum(a) - int_of_fixnum(b);
- if (r < -0x08000000 || r > 0x07ffffff) return onevalue(nil);
- return onevalue(fixnum_of_int(r));
- }
- Lisp_Object Ligreaterp(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("igreaterp", a, b);
- return onevalue(Lispify_predicate(a > b));
- }
- Lisp_Object Lilessp(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("ilessp", a, b);
- return onevalue(Lispify_predicate(a < b));
- }
- Lisp_Object Ligeq(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("igeq", a, b);
- return onevalue(Lispify_predicate(a >= b));
- }
- Lisp_Object Lileq(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("ileq", a, b);
- return onevalue(Lispify_predicate(a <= b));
- }
- static Lisp_Object MS_CDECL Lilogand(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- Lisp_Object r;
- if (nargs == 0) return onevalue(fixnum_of_int(-1));
- if (nargs > ARG_CUT_OFF) return aerror("too many args for ilogand");
- CSL_IGNORE(nil);
- va_start(a, nargs);
- r = va_arg(a, Lisp_Object);
- if (!is_fixnum(r)) return aerror1("ilogand", r);
- while (--nargs != 0)
- { Lisp_Object w = va_arg(a, Lisp_Object);
- if (!is_fixnum(w))
- { va_end(a);
- return aerror1("ilogand", w);
- }
- r = (Lisp_Object)((int32)r & (int32)w);
- }
- va_end(a);
- return onevalue(r);
- }
- static Lisp_Object MS_CDECL Lilogor(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- Lisp_Object r;
- if (nargs == 0) return onevalue(fixnum_of_int(0));
- if (nargs > ARG_CUT_OFF) return aerror("too many args for ilogor");
- CSL_IGNORE(nil);
- va_start(a, nargs);
- r = va_arg(a, Lisp_Object);
- if (!is_fixnum(r)) return aerror1("ilogor", r);
- while (--nargs != 0)
- { Lisp_Object w = va_arg(a, Lisp_Object);
- if (!is_fixnum(w))
- { va_end(a);
- return aerror1("ilogor", w);
- }
- r = (Lisp_Object)((int32)r | (int32)w);
- }
- va_end(a);
- return onevalue(r);
- }
- static Lisp_Object MS_CDECL Lilogxor(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- Lisp_Object r;
- if (nargs == 0) return onevalue(fixnum_of_int(0));
- if (nargs > ARG_CUT_OFF) return aerror("too many args for ilogxor");
- CSL_IGNORE(nil);
- va_start(a, nargs);
- r = va_arg(a, Lisp_Object);
- if (!is_fixnum(r)) return aerror1("ilogxor", r);
- while (--nargs != 0)
- { Lisp_Object w = va_arg(a, Lisp_Object);
- if (!is_fixnum(w))
- { va_end(a);
- return aerror1("ilogxor", w);
- }
- r = (Lisp_Object)(((int32)r ^ (int32)w) + TAG_FIXNUM);
- }
- va_end(a);
- return onevalue(r);
- }
- static Lisp_Object Lilogand2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("ilogand", a, b);
- return onevalue(a & b);
- }
- static Lisp_Object Lilogor2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("ilogor", a, b);
- return onevalue(a | b);
- }
- static Lisp_Object Lilogxor2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("ilogxor", a, b);
- return onevalue((a ^ b) + TAG_FIXNUM);
- }
- Lisp_Object Limin(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("imin", a, b);
- return onevalue(a < b ? a : b);
- }
- Lisp_Object Limax(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("imax", a, b);
- return onevalue(a > b ? a : b);
- }
- Lisp_Object Liminus(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a)) return aerror1("iminus", a);
- return onevalue((Lisp_Object)(2*TAG_FIXNUM - (int32)a));
- }
- Lisp_Object Liminusp(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return onevalue(Lispify_predicate((int32)a < (int32)fixnum_of_int(0)));
- }
- static Lisp_Object MS_CDECL Liplus(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- Lisp_Object r;
- if (nargs == 0) return onevalue(fixnum_of_int(0));
- if (nargs > ARG_CUT_OFF) return aerror("too many args for iplus");
- CSL_IGNORE(nil);
- va_start(a, nargs);
- r = va_arg(a, Lisp_Object);
- if (!is_fixnum(r)) return aerror1("iplus", r);
- while (--nargs != 0)
- { Lisp_Object w = va_arg(a, Lisp_Object);
- if (!is_fixnum(w))
- { va_end(a);
- return aerror1("iplus", w);
- }
- r = (Lisp_Object)((int32)r + (int32)w - TAG_FIXNUM);
- }
- va_end(a);
- return onevalue(r);
- }
- Lisp_Object Liplus2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("iplus2", a, b);
- return onevalue((Lisp_Object)((int32)a + (int32)b - TAG_FIXNUM));
- }
- Lisp_Object Liquotient(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- int32 aa, bb, c;
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b) ||
- b == fixnum_of_int(0)) return aerror2("iquotient", a, b);
- /* C does not define the exact behaviour of /, % on -ve args */
- aa = int_of_fixnum(a);
- bb = int_of_fixnum(b);
- c = aa % bb;
- if (aa < 0)
- { if (c > 0) c -= bb;
- }
- else if (c < 0) c += bb;
- return onevalue(fixnum_of_int((aa-c)/bb));
- }
- Lisp_Object Liremainder(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- int32 aa, bb, c;
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b) ||
- b == fixnum_of_int(0)) return aerror2("iremainder", a, b);
- /* C does not define the exact behaviour of /, % on -ve args */
- aa = int_of_fixnum(a);
- bb = int_of_fixnum(b);
- c = aa % bb;
- if (aa < 0)
- { if (c > 0) c -= bb;
- }
- else if (c < 0) c += bb;
- return onevalue(fixnum_of_int(c));
- }
- Lisp_Object Lirightshift(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("irightshift", a, b);
- return onevalue(fixnum_of_int(int_of_fixnum(a) >> int_of_fixnum(b)));
- }
- Lisp_Object Lisub1(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a)) return aerror1("isub1", a);
- return onevalue((Lisp_Object)((int32)a - 0x10));
- }
- static Lisp_Object MS_CDECL Litimes(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- Lisp_Object rr;
- int32 r;
- if (nargs == 0) return onevalue(fixnum_of_int(1));
- if (nargs > ARG_CUT_OFF) return aerror("too many args for itimes");
- CSL_IGNORE(nil);
- va_start(a, nargs);
- rr = va_arg(a, Lisp_Object);
- if (!is_fixnum(rr)) return aerror1("itimes", rr);
- r = int_of_fixnum(rr);
- while (nargs-- != 0)
- { Lisp_Object w = va_arg(a, Lisp_Object);
- if (!is_fixnum(w))
- { va_end(a);
- return aerror1("itimes", w);
- }
- r = r * int_of_fixnum(w);
- }
- va_end(a);
- return onevalue(fixnum_of_int(r));
- }
- Lisp_Object Litimes2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (!is_fixnum(a) || !is_fixnum(b)) return aerror2("itimes2", a, b);
- return onevalue(fixnum_of_int(int_of_fixnum(a) * int_of_fixnum(b)));
- }
- Lisp_Object Lionep(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return onevalue(Lispify_predicate((int32)a == (int32)fixnum_of_int(1)));
- }
- Lisp_Object Lizerop(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return onevalue(Lispify_predicate((int32)a == (int32)fixnum_of_int(0)));
- }
- #ifdef FP_EVALUATE
- static double fp_args[32];
- static double fp_stack[16];
- /* codes 0 to 31 just load up arguments */
- #define FP_RETURN 32
- #define FP_PLUS 33
- #define FP_DIFFERENCE 34
- #define FP_TIMES 35
- #define FP_QUOTIENT 36
- #define FP_MINUS 37
- #define FP_SQUARE 38
- #define FP_CUBE 39
- #define FP_SIN 40
- #define FP_COS 41
- #define FP_TAN 42
- #define FP_EXP 43
- #define FP_LOG 44
- #define FP_SQRT 45
- static Lisp_Object Lfp_eval(Lisp_Object nil, Lisp_Object code,
- Lisp_Object args)
- /*
- * The object of this code is to support fast evaluation of numeric
- * expressions. The first argument is a vector of byte opcodes, while
- * the second arg is a list of floating point values whose value will (or
- * at least may) be used. There are at most 32 values in this list.
- */
- {
- int n = 0;
- double w;
- unsigned char *p;
- if (!is_vector(code)) return aerror("fp-evaluate");
- while (consp(args))
- { fp_args[n++] = float_of_number(qcar(args));
- args = qcdr(args);
- }
- n = 0;
- p = &ucelt(code, 0);
- for (;;)
- { int op = *p++;
- /*
- * Opcodes 0 to 31 just load up the corresponding input value.
- */
- if (op < 32)
- { fp_stack[n++] = fp_args[op];
- continue;
- }
- switch (op)
- {
- default:
- return aerror("Bad op in fp-evaluate");
- case FP_RETURN:
- args = make_boxfloat(fp_stack[0], TYPE_DOUBLE_FLOAT);
- errexit();
- return onevalue(args);
- case FP_PLUS:
- n--;
- fp_stack[n] += fp_stack[n-1];
- continue;
- case FP_DIFFERENCE:
- n--;
- fp_stack[n] -= fp_stack[n-1];
- continue;
- case FP_TIMES:
- n--;
- fp_stack[n] *= fp_stack[n-1];
- continue;
- case FP_QUOTIENT:
- n--;
- fp_stack[n] /= fp_stack[n-1];
- continue;
- case FP_MINUS:
- fp_stack[n] = -fp_stack[n];
- continue;
- case FP_SQUARE:
- fp_stack[n] *= fp_stack[n];
- continue;
- case FP_CUBE:
- w = fp_stack[n];
- w *= w;
- fp_stack[n] *= w;
- continue;
- case FP_SIN:
- fp_stack[n] = sin(fp_stack[n]);
- continue;
- case FP_COS:
- fp_stack[n] = cos(fp_stack[n]);
- continue;
- case FP_TAN:
- fp_stack[n] = tan(fp_stack[n]);
- continue;
- case FP_EXP:
- fp_stack[n] = exp(fp_stack[n]);
- continue;
- case FP_LOG:
- fp_stack[n] = log(fp_stack[n]);
- continue;
- case FP_SQRT:
- fp_stack[n] = sqrt(fp_stack[n]);
- continue;
- }
- }
- }
- #endif
- setup_type const arith12_setup[] =
- {
- {"frexp", Lfrexp, too_many_1, wrong_no_1},
- {"modular-difference", too_few_2, Lmodular_difference, wrong_no_2},
- {"modular-minus", Lmodular_minus, too_many_1, wrong_no_1},
- {"modular-number", Lmodular_number, too_many_1, wrong_no_1},
- {"modular-plus", too_few_2, Lmodular_plus, wrong_no_2},
- {"modular-quotient", too_few_2, Lmodular_quotient, wrong_no_2},
- {"modular-reciprocal", Lmodular_reciprocal, too_many_1, wrong_no_1},
- {"modular-times", too_few_2, Lmodular_times, wrong_no_2},
- {"modular-expt", too_few_2, Lmodular_expt, wrong_no_2},
- {"set-small-modulus", Lset_small_modulus, too_many_1, wrong_no_1},
- {"iadd1", Liadd1, too_many_1, wrong_no_1},
- {"idifference", too_few_2, Lidifference, wrong_no_2},
- {"xdifference", too_few_2, Lxdifference, wrong_no_2},
- {"igeq", too_few_2, Ligeq, wrong_no_2},
- {"igreaterp", too_few_2, Ligreaterp, wrong_no_2},
- {"ileq", too_few_2, Lileq, wrong_no_2},
- {"ilessp", too_few_2, Lilessp, wrong_no_2},
- {"ilogand", Lidentity, Lilogand2, Lilogand},
- {"ilogor", Lidentity, Lilogor2, Lilogor},
- {"ilogxor", Lidentity, Lilogxor2, Lilogxor},
- {"imax", too_few_2, Limax, wrong_no_2},
- {"imin", too_few_2, Limin, wrong_no_2},
- {"iminus", Liminus, too_many_1, wrong_no_1},
- {"iminusp", Liminusp, too_many_1, wrong_no_1},
- {"iplus", Lidentity, Liplus2, Liplus},
- {"iplus2", too_few_2, Liplus2, wrong_no_2},
- {"iquotient", too_few_2, Liquotient, wrong_no_2},
- {"iremainder", too_few_2, Liremainder, wrong_no_2},
- {"irightshift", too_few_2, Lirightshift, wrong_no_2},
- {"isub1", Lisub1, too_many_1, wrong_no_1},
- {"itimes", Lidentity, Litimes2, Litimes},
- {"itimes2", too_few_2, Litimes2, wrong_no_2},
- {"ionep", Lionep, too_many_1, wrong_no_1},
- {"izerop", Lizerop, too_many_1, wrong_no_1},
- #ifdef FP_EVALUATE
- {"fp-evaluate", too_few_2, Lfp_eval, wrong_no_2},
- #endif
- {NULL, 0, 0, 0}
- };
- /* end of arith12.c */
|