12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270 |
- /* arith10.c Copyright (C) 1990-2002 Codemist Ltd */
- /*
- * Arithmetic functions.
- */
- /*
- * This code may be used and modified, and redistributed in binary
- * or source form, subject to the "CCL Public License", which should
- * accompany it. This license is a variant on the BSD license, and thus
- * permits use of code derived from this in either open and commercial
- * projects: but it does require that updates to this code be made
- * available back to the originators of the package.
- * Before merging other code in with this or linking this code
- * with other packages or libraries please check that the license terms
- * of the other material are compatible with those of this.
- */
- /* Signature: 3f726493 08-Apr-2002 */
- #include <stdarg.h>
- #include <string.h>
- #include <ctype.h>
- #include <math.h>
- #include "machine.h"
- #include "tags.h"
- #include "cslerror.h"
- #include "externs.h"
- #include "arith.h"
- #include "entries.h"
- #ifdef TIMEOUT
- #include "timeout.h"
- #endif
- /*****************************************************************************/
- /*** Transcendental functions etcetera. ***/
- /*****************************************************************************/
- /*
- * Much of the code here is extracted from the portable Fortran library
- * used by Codemist with its Fortran compiler.
- */
- #define CSL_log_2 0.6931471805599453094
- #ifdef COMMON
- static Complex MS_CDECL Cdiv_z(Complex, Complex);
- static Complex MS_CDECL cpowi(Complex z, int n)
- {
- /*
- * Raises a complex number to an integer power by repeated squaring.
- */
- if (n == 0)
- { Complex one;
- one.real = 1.0;
- one.imag = 0.0;
- return one;
- }
- else if (n < 0)
- { Complex one;
- one.real = 1.0;
- one.imag = 0.0;
- return Cdiv_z(one, cpowi(z, -n));
- }
- else if (n == 1) return z;
- else
- { Complex r = cpowi(z, n/2);
- double x1 = r.real, y1 = r.imag;
- double x2, y2;
- if (n & 1)
- { double x = z.real, y = z.imag;
- x2 = x*x1 - y*y1;
- y2 = x*y1 + y*x1;
- }
- else
- { x2 = x1;
- y2 = y1;
- }
- /*
- * This computes r = z^(n/2) and then evaluates either
- * r*r
- * or (r*z)*r
- * where the the calculation or (r*z) will not overflow unless the
- * final result is going to. Note that if the sum had been done as
- * (r*r)*z
- * then in some cases r*r might have overflowed even though r*r*z would
- * not (e.g. r*r giving a just-out-of-range real value, and having
- * magnitude between 1 and sqrt(2), and argument pi/4).
- * Although it is SHODDY, for at least the present I will not bother
- * about overflow in during the process of the final complex
- * multiplication. After all I suspect ALL complex multiplications
- * generated by the compiler will have the same limitation.
- */
- z.real = x1*x2 - y1*y2;
- z.imag = x1*y2 + y1*x2;
- return z;
- }
- }
- static Complex MS_CDECL csin(Complex z)
- {
- double x = z.real, y = z.imag;
- /*
- * sin(x + iy) = sin(x)*cosh(y) + i cos(x)*sinh(y)
- * For smallish y this can be used directly. For |y| > 50 I will
- * compute sinh and cosh as just +/- exp(|y|)/2
- */
- double s = sin(x), c = cos(x);
- double absy = fabs(y);
- if (absy <= 50.0)
- { double sh = sinh(y), ch = cosh(y);
- z.real = s * ch;
- z.imag = c * sh;
- return z;
- }
- else
- {
- double w;
- int n = _reduced_exp(absy, &w) - 1;
- z.real = ldexp(s*w, n);
- if (y < 0.0) z.imag = ldexp(-c*w, n);
- else z.imag = ldexp(c*w, n);
- return z;
- }
- }
- #define CSL_sqrt_starter 0.7071
- #define CSL_sqrt_iters 6
- static Complex MS_CDECL csqrt(Complex z)
- {
- double x = z.real, y = z.imag;
- /*
- *
- */
- int j, n;
- double scale;
- double vx, vy;
- if (y == 0.0)
- { if (x < 0.0)
- { z.real = 0.0;
- z.imag = sqrt(-x);
- }
- else
- { z.real = sqrt(x);
- z.imag = 0.0;
- }
- return z; /* Pure real arguments are easy */
- }
- (void)frexp(y, &n);
- /* Exact value returned by frexp not critical */
- if (x != 0.0)
- { int n1;
- (void)frexp(x, &n1);
- if (n1 > n) n = n1;
- }
- n &= ~1; /* ensure it is even */
- scale = ldexp(1.0, n);
- x = x / scale;
- y = y / scale; /* Now max(|x|, |y|) is in [0.5, 1) */
- /*
- * Generate some kind of starting approximation for a NR iteration.
- * The value selected here here will give a relative error of 1.6e-5
- * after 4 iterations, and so would give about 6.0e-20 after 6, which
- * is more accurate (just) than the machines that I use can cope with.
- * Note that for z near the real axis the starting approximation is
- * either real or (pure) imaginary, thus helping ensure that the near-
- * zero component of the answer comes out to decent accuracy.
- */
- if (y < x)
- { if (x > -y) vx = CSL_sqrt_starter, vy = 0.0;
- else vx = CSL_sqrt_starter, vy = -CSL_sqrt_starter;
- }
- else if (x > -y) vx = CSL_sqrt_starter, vy = CSL_sqrt_starter;
- else if (y > 0.0) vx = 0.0, vy = CSL_sqrt_starter;
- else vx = 0.0, vy = -CSL_sqrt_starter;
- /*
- * For starting values as preconditioned here 6 iterations will converge
- * to about adequate accuracy. For some arguments fewer iterations would
- * suffice, but I am taking the view that the cost of providing a more
- * elaborate end-test might well exceed the cost of the extra iterations
- * that this code performs. Experiment shows that the worst relative
- * error after 4 iterations is 1.3e-5, so after 6 it will be about
- * 3.0e-20, which is better than machine accuracy. 5 iterations would
- * not be enough.
- */
- for (j=0; j<CSL_sqrt_iters; j++)
- { double t = vx*vx + vy*vy;
- double qx = (x*vx + y*vy)/t,
- qy = (y*vx - x*vy)/t;
- vx = (vx + qx)*0.5;
- vy = (vy + qy)*0.5;
- }
- n = n/2;
- z.real = ldexp(vx, n);
- z.imag = ldexp(vy, n);
- return z;
- }
- #undef CSL_sqrt_starter
- #undef CSL_sqrt_iters
- static Complex MS_CDECL ctan(Complex z)
- {
- double x = z.real, y = z.imag;
- /*
- * tan(x + iy) = (tan(x) + i tanh(y))/(1 - i tan(x)*tanh(y))
- */
- double t = tan(x), th = tanh(y);
- double t2 = t*t, th2 = th*th;
- /* many risks of premature overflow here */
- double d = 1.0 + t2*th2;
- z.real = t*(1.0-th2)/d; /* /* if th2 is very near 1.0 this is inaccurate */
- z.imag = th*(1.0+t2)/d;
- return z;
- }
- static Complex MS_CDECL Cdiv_z(Complex p, Complex q)
- {
- /*
- * (p/q) as a complex number. Note abominable issues about scaling so
- * the large values of p and q can be handled properly.
- * The easy scheme for (a + ib)/(c + id) would have been
- * (ac+bd)/w + i(bc - ad)/w with w = cc + dd
- */
- double a = p.real, b = p.imag;
- double c = q.real, d = q.imag;
- Complex r;
- if (d == 0.0) /* dividing by a real number */
- { r.real = a/c;
- r.imag = b/c;
- return r;
- }
- else if (c == 0.0) /* dividing by a purely imaginary number */
- { r.real = b/d;
- r.imag = -a/d;
- return r;
- }
- else
- {
- double scalep, scaleq, w;
- int n1, n2, n;
- /*
- * I avoid going frexp(0.0, &n1) since the exponent handed back in that
- * case is zero, which is not actually very helpful here, where I would
- * rather it was minus infinity.
- */
- if (a == 0.0)
- { if (b == 0.0) return p; /* (0.0, 0.0)/z */
- /* Exact results from frexp unimportant */
- else (void)frexp(b, &n1);
- }
- else if (b == 0.0) (void)frexp(a, &n1);
- else
- { (void)frexp(a, &n1);
- (void)frexp(b, &n2);
- if (n2>n1) n1 = n2;
- }
- n = n1;
- scalep = ldexp(1.0, n1); /* scale numerator */
- a = a / scalep;
- b = b / scalep;
- /* At this stage I know that the denominator has nonzero real & imag parts */
- (void)frexp(c, &n1);
- (void)frexp(d, &n2);
- if (n2>n1) n1 = n2;
- n = n - n1;
- scaleq = ldexp(1.0, n1); /* scale denominator */
- c = c / scaleq;
- d = d / scaleq;
- w = c*c + d*d; /* no overflow */
- r.real = ldexp((a*c + b*d)/w, n); /* rescale final result */
- r.imag = ldexp((b*c - a*d)/w, n);
- return r;
- }
- }
- static Lisp_Object make_complex_float(Complex v, Lisp_Object a)
- /*
- * Here a complex result has been been computed (with double precision values
- * for both real and imag parts). Squash to the required floating point
- * types and package up as a complex value, where (a) was the original input
- * value and so should defined the type needed. Note that both
- * components of a will have the same type so only one needs testing.
- * I do the 'onevalue' here.
- */
- {
- int32 type;
- Lisp_Object a1, a2, nil;
- a = real_part(a);
- if (is_sfloat(a))
- { Float_union r, i;
- r.f = (float)v.real;
- i.f = (float)v.imag;
- a1 = make_complex((r.i & ~(int32)0xf) + TAG_SFLOAT,
- (i.i & ~(int32)0xf) + TAG_SFLOAT);
- errexit();
- return onevalue(a1);
- }
- if (is_bfloat(a)) type = type_of_header(flthdr(a));
- else type = TYPE_SINGLE_FLOAT;
- a1 = make_boxfloat(v.real, type);
- errexit();
- a2 = make_boxfloat(v.imag, type);
- errexit();
- a1 = make_complex(a1, a2);
- errexit();
- return onevalue(a1);
- }
- #endif
- #ifdef __alpha
- /*
- * NAG report that they need this for the DEC Alpha... some variant on it
- * may be necessary on other systems too?
- */
- #define isnegative(x) ((x) < 0.0 && !isnan(x))
- #else
- #define isnegative(x) ((x) < 0.0)
- #endif
- static double MS_CDECL rln(double x)
- {
- if (isnegative(x)) x = -x;
- return log(x);
- }
- static double MS_CDECL iln(double x)
- {
- if (isnegative(x)) return _pi;
- else return 0.0;
- }
- static double MS_CDECL rsqrt(double x)
- {
- if (isnegative(x)) return 0.0;
- else return sqrt(x);
- }
- static double MS_CDECL isqrt(double x)
- {
- if (isnegative(x)) return sqrt(-x);
- else return 0.0;
- }
- static double MS_CDECL rasin(double x)
- {
- if (1.0 < x) return _half_pi;
- else if (x <= -1.0) return -_half_pi;
- else return asin(x);
- }
- static double MS_CDECL iasin(double x)
- {
- CSLbool sign;
- if (-1.0 <= x && x <= 1.0) return 0.0;
- else if (x < 0.0) x = -x, sign = YES;
- else sign = NO;
- if (x < 2.0)
- { x += sqrt(x*x - 1.0);
- x = log(x); /* /* serious inaccuracy here */
- }
- else if (x < 1.0e9)
- { x += sqrt(x*x - 1.0);
- x = log(x);
- }
- else x = CSL_log_2 + log(x);
- if (sign) return -x;
- else return x;
- }
- static double MS_CDECL racos(double x)
- {
- if (x <= -1.0) return _pi;
- else if (1.0 <= x) return 0.0;
- else return acos(x);
- }
- static double MS_CDECL iacos(double x)
- {
- CSLbool sign;
- if (x < -1.0) x = -x, sign = YES;
- else if (1.0 < x) sign = NO;
- else return 0.0;
- if (x < 2.0)
- { x += sqrt(x*x - 1.0);
- x = log(x); /* /* serious inaccuracy here */
- }
- else if (x < 1.0e9)
- { x += sqrt(x*x - 1.0);
- x = log(x);
- }
- else x = CSL_log_2 + log(x);
- if (sign) return x;
- else return -x;
- }
- static double MS_CDECL CSLasinh(double x)
- {
- CSLbool sign;
- if (x < 0.0) x = -x, sign = YES;
- else sign = NO;
- if (x < 1.0e-3)
- { double xx = x*x;
- x = x*(1 - xx*((1.0/6.0) - (3.0/40.0)*xx));
- }
- else if (x < 1.0e9)
- { x += sqrt(1.0 + x*x);
- x = log(x);
- }
- else x = log(x) + CSL_log_2;
- if (sign) x = -x;
- return x;
- }
- static double acosh_coeffs[] =
- {
- -0.15718655513711019382e-5, /* x^11 */
- +0.81758779765416234142e-5, /* x^10 */
- -0.24812280287135584149e-4, /* x^9 */
- +0.62919005027033514743e-4, /* x^8 */
- -0.15404104307204835991e-3, /* x^7 */
- +0.38339903706706128921e-3, /* x^6 */
- -0.98871347029548821795e-3, /* x^5 */
- +0.26854094489454297811e-2, /* x^4 */
- -0.78918167367399344521e-2, /* x^3 */
- +0.26516504294146930609e-1, /* x^2 */
- -0.11785113019775570984, /* x */
- +1.41421356237309504786 /* 1 */
- };
- static double MS_CDECL racosh(double x)
- {
- CSLbool sign;
- if (x < -1.0) x = -x, sign = YES;
- else if (1.0 < x) sign = NO;
- else return 0.0;
- if (x < 1.5)
- { int i;
- double r = acosh_coeffs[0];
- x = (x - 0.5) - 0.5;
- /*
- * This is a minimax approximation to acosh(1+x)/sqrt(x) over the
- * range x=0 to 0.5
- */
- for (i=1; i<=11; i++) r = x*r + acosh_coeffs[i];
- x = sqrt(x)*r;
- }
- else if (x < 1.0e9)
- { x += sqrt((x - 1.0)*(x + 1.0));
- x = log(x);
- }
- else x = log(x) + CSL_log_2;
- if (sign) return -x;
- else return x;
- }
- static double MS_CDECL iacosh(double x)
- {
- if (1.0 <= x) return 0.0;
- else if (x <= -1.0) return _pi;
- else return acos(x);
- }
- static double MS_CDECL ratanh(double z)
- {
- if (z > -0.01 && z < -0.01)
- { double zz = z*z;
- return z * (1 + zz*((1.0/3.0) + zz*((1.0/5.0) + zz*(1.0/7.0))));
- }
- z = (1.0 + z) / (1.0 - z);
- if (z < 0.0) z = -z;
- return log(z) / 2.0;
- }
- static double MS_CDECL iatanh(double x)
- {
- if (x < -1.0) return _half_pi;
- else if (1.0 < x) return -_half_pi;
- else return 0.0;
- }
- /*
- * The functions from here on (for a bit) represent re-work to support the
- * full set of elementary functions that Reduce would (maybe) like. They
- * have not been adjusted to allow use with the software floating point
- * option.
- */
- #define n180pi 57.2957795130823208768 /* 180/pi */
- #define pi180 0.017453292519943295769 /* pi/180 */
- #define sqrthalf 0.7071 /* sqrt(0.5), low accuracy OK */
- static double MS_CDECL racosd(double a)
- {
- if (a <= -1.0) return 180.0;
- else if (a < -sqrthalf) return 180.0 - n180pi*acos(-a);
- else if (a < 0.0) return 90.0 + n180pi*asin(-a);
- else if (a < sqrthalf) return 90.0 - n180pi*asin(a);
- else if (a < 1.0) return n180pi*acos(a);
- else return 0.0;
- }
- static double MS_CDECL iacosd(double a)
- /*
- * This version is only good enough for real-mode CSL, not for CCL
- */
- {
- if (a >= -1.0 && a <= 1.0) return 0.0;
- else return 1.0;
- }
- static double MS_CDECL racot(double a)
- {
- if (a >= 0.0)
- if (a > 1.0) return atan(1.0/a);
- else return _half_pi - atan(a);
- else if (a < -1.0) return _pi - atan(-1.0/a);
- else return _half_pi + atan(-a);
- }
- static double MS_CDECL racotd(double a)
- {
- if (a >= 0.0)
- if (a > 1.0) return n180pi*atan(1.0/a);
- else return 90.0 - n180pi*atan(a);
- else if (a < -1.0) return 180.0 - n180pi*atan(-1.0/a);
- else return 90.0 + n180pi*atan(-a);
- }
- static double MS_CDECL racoth(double a)
- /*
- * No good in complex case
- */
- {
- if (a >= -1.0 && a <= 1.0) return 0.0;
- else return ratanh(1.0/a);
- }
- static double MS_CDECL iacoth(double a)
- {
- if (a >= -1.0 && a <= 1.0) return 1.0;
- else return 0.0;
- }
- static double MS_CDECL racsc(double a)
- {
- if (a > -1.0 && a < 1.0) return 0.0;
- else return asin(1.0/a);
- }
- static double MS_CDECL iacsc(double a)
- {
- if (a > -1.0 && a < 1.0) return 1.0;
- else return 0.0;
- }
- static double MS_CDECL racscd(double a)
- {
- if (a > -1.0 && a < 1.0) return 0.0;
- /*
- * I could do better than this, I suspect...
- */
- else return n180pi*asin(1.0/a);
- }
- static double MS_CDECL iacscd(double a)
- {
- if (a > -1.0 && a < 1.0) return 1.0;
- else return 0.0;
- }
- static double MS_CDECL racsch(double a)
- {
- if (a == 0.0) return HUGE_VAL;
- else return CSLasinh(1.0/a);
- }
- static double MS_CDECL rasec(double a)
- {
- if (a > -1.0 && a <= 1.0) return 0.0;
- else return acos(1.0/a);
- }
- static double MS_CDECL iasec(double a)
- {
- if (a > -1.0 && a < 1.0) return 1.0;
- else return 0.0;
- }
- static double MS_CDECL rasecd(double a)
- {
- if (a > -1.0 && a <= 1.0) return 0.0;
- /*
- * I could do better than this, I suspect...
- */
- else return n180pi*acos(1.0/a);
- }
- static double MS_CDECL iasecd(double a)
- {
- if (a > -1.0 && a < 1.0) return 1.0;
- else return 0.0;
- }
- static double MS_CDECL rasech(double a)
- {
- if (a <= 0.0 || a >= 1.0) return 0.0;
- else return racosh(1.0/a);
- }
- static double MS_CDECL iasech(double a)
- {
- if (a <= 0.0 || a > 1.0) return 1.0;
- else return 0.0;
- }
- static double MS_CDECL rasind(double a)
- {
- if (a <= -1.0) return -90.0;
- else if (a < -sqrthalf) return -90.0 + n180pi*acos(-a);
- else if (a < sqrthalf) return n180pi*asin(a);
- else if (a < 1.0) return 90.0 - n180pi*acos(a);
- else return 90.0;
- }
- static double MS_CDECL iasind(double a)
- {
- if (a >= -1.0 && a <= 1.0) return 0.0;
- else return 1.0;
- }
- static double MS_CDECL ratand(double a)
- {
- if (a < -1.0) return -90.0 + n180pi*atan(-1.0/a);
- else if (a < 1.0) return n180pi*atan(a);
- else return 90.0 - n180pi*atan(1.0/a);
- }
- static double MS_CDECL rcbrt(double a)
- {
- int xx, x, i, neg = 0;
- double b;
- if (a == 0.0) return 0.0;
- else if (a < 0.0) a = -a, neg = 1;
- b = frexp(a, &xx); /* end-conditions unimportant */
- x = xx;
- /*
- * b is now in the range 0.5 to 1. The next line produces an
- * approximately minimax linear approximation to the cube root
- % function over the range concerned.
- */
- b = 0.5996 + 0.4081*b;
- while (x % 3 != 0) x--; b *= 1.26;
- b = ldexp(b, x/3);
- /*
- * Experiment shows that there are values of the input variable
- * that lead to the last of the following iterations making a
- * (small) change to the result, but almost all of the time I
- * could get away with one less. Still, I do not consider cbrt
- * important enough to optimise any further (e.g. I could go to
- * use of a minimax rational first approximation...)
- */
- for (i=0; i<6; i++)
- b = (2.0*b + a/(b*b))/3.0;
- if (neg) return -b;
- else return b;
- }
- static double MS_CDECL rcot(double a)
- /*
- * Compare this code with rcotd(). Here I just compute a tangent and
- * form its reciprocal. What about an arg of pi/2 then, where the
- * tangent calculation might overflow? Well it should not, since no
- * integer multiple of pi/2 has an exact machine representation, so
- * if you try to compute tan(pi/2) in floating point you should get a
- * large but finite value. For very large a where the tan() function
- * loses resolution there could still be trouble, which is why I use
- * a slower formula for big a.
- */
- {
- if (a > 1000.0 || a < -1000.0) return cos(a)/sin(a);
- else return 1.0/tan(a);
- }
- static double MS_CDECL arg_reduce_degrees(double a, int *quadrant)
- /*
- * Reduce argument to the range -45 to 45, and set quadrant to the
- * relevant quadant. Returns arg converted to radians.
- */
- {
- double w = a / 90.0;
- int32 n = (int)w;
- w = a - 90.0*n;
- while (w < -45.0)
- { n--;
- w = a - 90.0*n;
- }
- while (w >= 45.0)
- { n++;
- w = a - 90.0*n;
- }
- *quadrant = (int)(n & 3);
- return pi180*w;
- }
- static double MS_CDECL rsind(double a)
- {
- int quadrant;
- a = arg_reduce_degrees(a, &quadrant);
- switch (quadrant)
- {
- default:
- case 0: return sin(a);
- case 1: return cos(a);
- case 2: return sin(-a);
- case 3: return -cos(a);
- }
- }
- static double MS_CDECL rcosd(double a)
- {
- int quadrant;
- a = arg_reduce_degrees(a, &quadrant);
- switch (quadrant)
- {
- default:
- case 0: return cos(a);
- case 1: return sin(-a);
- case 2: return -cos(a);
- case 3: return sin(a);
- }
- }
- static double MS_CDECL rtand(double a)
- {
- int quadrant;
- a = arg_reduce_degrees(a, &quadrant);
- switch (quadrant)
- {
- default:
- case 0:
- case 2: return tan(a);
- case 1:
- case 3: return 1.0/tan(-a);
- }
- }
- static double MS_CDECL rcotd(double a)
- {
- int quadrant;
- a = arg_reduce_degrees(a, &quadrant);
- switch (quadrant)
- {
- default:
- case 0:
- case 2: return 1.0/tan(a);
- case 1:
- case 3: return tan(-a);
- }
- }
- static double MS_CDECL rcoth(double a)
- {
- if (a == 0.0) return HUGE_VAL;
- else return 1.0/tanh(a);
- }
- static double MS_CDECL rcsc(double a)
- {
- a = sin(a);
- if (a == 0.0) return HUGE_VAL;
- else return 1.0/a;
- }
- static double MS_CDECL rcscd(double a)
- {
- a = rsind(a);
- if (a == 0.0) return HUGE_VAL;
- else return 1.0/a;
- }
- static double MS_CDECL rcsch(double a)
- {
- /*
- * This code is imperfect in that (at least!) exp(-a) can underflow to zero
- * before 2*exp(-a) ought to have. I will not worry about such refinement
- * here. Much.
- */
- if (a == 0.0) return HUGE_VAL;
- else if (a > 20.0) return 2.0*exp(-a);
- else if (a < -20.0) return -2.0*exp(a);
- else return 1.0/sinh(a);
- }
- #define CSL_log10 2.302585092994045684
- static double MS_CDECL rlog10(double a)
- {
- if (a > 0.0) return log(a)/CSL_log10;
- else return 0.0;
- }
- static double MS_CDECL ilog10(double a)
- {
- if (a <= 0) return 1.0;
- else return 0.0;
- }
- static double MS_CDECL rsec(double a)
- {
- a = cos(a);
- if (a == 0.0) return HUGE_VAL;
- else return 1.0/a;
- }
- static double MS_CDECL rsecd(double a)
- {
- a = rcosd(a);
- if (a == 0.0) return HUGE_VAL;
- else return 1.0/a;
- }
- static double MS_CDECL rsech(double a)
- {
- /*
- * When |a| is big I ought to return 0.0
- */
- return 1.0/cosh(a);
- }
- #ifdef COMMON
- #define i_times(z) \
- { double temp = z.imag; z.imag = z.real; z.real = -temp; }
- #define m_i_times(z) \
- { double temp = z.imag; z.imag = -z.real; z.real = temp; }
- #endif
- /*
- * The calculations in the next few procedures are numerically
- * crummy, but they should get branch cuts correct. Re-work later.
- */
- #ifdef COMMON
- static Complex MS_CDECL casinh(Complex z)
- /* log(z + sqrt(1 + z^2)) */
- {
- int quadrant = 0;
- Complex w;
- if (z.real < 0.0)
- { z.real = -z.real;
- z.imag = -z.imag;
- quadrant = 1;
- }
- if (z.imag < 0.0)
- { z.imag = -z.imag;
- quadrant |= 2;
- }
- /* /* The next line can overflow or lose precision */
- w.real = z.real*z.real - z.imag*z.imag + 1.0;
- w.imag = 2*z.real*z.imag;
- w = csqrt(w);
- w.real += z.real;
- w.imag += z.imag;
- w = Cln(w);
- if (quadrant & 2) w.imag = -w.imag;
- if (quadrant & 1) w.real = -w.real, w.imag = -w.imag;
- return w;
- }
- static Complex MS_CDECL cacosh(Complex z)
- /* 2*log(sqrt((z+1)/2) + sqrt((z-1)/2)) */
- {
- Complex w1, w2;
- w1.real = (z.real + 1.0)/2.0;
- w2.real = (z.real - 1.0)/2.0;
- w1.imag = w2.imag = z.imag/2.0;
- w1 = csqrt(w1);
- w2 = csqrt(w2);
- w1.real += w2.real;
- w1.imag += w2.imag;
- z = Cln(w1);
- z.real *= 2.0;
- z.imag *= 2.0;
- return z;
- }
- static Complex MS_CDECL catanh(Complex z)
- /* (log(1+z) - log(1-z))/2 */
- {
- Complex w1, w2;
- w1.real = 1.0 + z.real;
- w2.real = 1.0 - z.real;
- w1.imag = z.imag;
- w2.imag = -z.imag;
- w1 = Cln(w1);
- w2 = Cln(w2);
- w1.real -= w2.real;
- w1.imag -= w2.imag;
- w1.real /= 2.0;
- w1.imag /= 2.0;
- return w1;
- }
- static Complex MS_CDECL casin(Complex z)
- {
- i_times(z);
- z = casinh(z);
- m_i_times(z);
- return z;
- }
- static Complex MS_CDECL cacos(Complex z)
- {
- /* This is the code I had originally had...
- z = cacosh(z);
- m_i_times(z);
- return z;
- */
- /*
- * The following is asserted to behave better. I believe that the
- * calculation (pi/2 - z.real) is guaranteed to introduce severe error
- * when the answer is close to zero, and so this is probably not the ultimate
- * proper formula to use.
- */
- z = casin(z);
- z.real = _half_pi - z.real;
- z.imag = - z.imag;
- return z;
-
- }
- static Complex MS_CDECL catan(Complex z)
- {
- i_times(z);
- z = catanh(z);
- m_i_times(z);
- return z;
- }
- static Complex MS_CDECL csinh(Complex z)
- {
- i_times(z);
- z = csin(z);
- m_i_times(z);
- return z;
- }
- static Complex MS_CDECL ccosh(Complex z)
- {
- i_times(z);
- return Ccos(z);
- }
- static Complex MS_CDECL ctanh(Complex z)
- {
- i_times(z);
- z = ctan(z);
- m_i_times(z);
- return z;
- }
- /*
- * The next collection of things have not been implemented yet,
- * but might be wanted in a full extended system.... maybe.
- */
- static Complex MS_CDECL cacosd(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL cacot(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL cacotd(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL cacoth(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL cacsc(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL cacscd(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL cacsch(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL casec(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL casecd(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL casech(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL casind(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL catand(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL ccbrt(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL ccosd(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL ccot(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL ccotd(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL ccoth(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL ccsc(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL ccscd(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL ccsch(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL clog10(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL csec(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL csecd(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL csech(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL csind(Complex a)
- {
- return a;
- }
- static Complex MS_CDECL ctand(Complex a)
- {
- return a;
- }
- /* end of unimplemented bunch */
- #endif
- /*
- * Now the Lisp callable entrypoints for the above
- */
- typedef double MS_CDECL real_arg_fn(double);
- #ifdef COMMON
- typedef Complex MS_CDECL complex_arg_fn(Complex);
- #endif
- typedef struct trigfn
- { double (MS_CDECL *real)(double);
- double (MS_CDECL *imag)(double);
- #ifdef COMMON
- Complex (MS_CDECL *complex)(Complex);
- #endif
- } trigfn_record;
- #ifdef NeXT
- /*
- * The NeXT header files declare some functions from <math.h> with an
- * extra keyword __const__ in the signature, with a result that placing a
- * pointer to the function in a regularly-typed location leads to a
- * warning. The little wrapper functions here should sort that one out.
- */
- static double CSL_atan(double x){ return atan(x); }
- #define atan(x) CSL_atan(x)
- static double CSL_cos(double x) { return cos(x); }
- #define cos(x) CSL_cos(x)
- static double CSL_cosh(double x){ return cosh(x); }
- #define cosh(x) CSL_cosh(x)
- static double CSL_exp(double x) { return exp(x); }
- #define exp(x) CSL_exp(x)
- static double CSL_sin(double x) { return sin(x); }
- #define sin(x) CSL_sin(x)
- static double CSL_sinh(double x){ return sinh(x); }
- #define sinh(x) CSL_sinh(x)
- static double CSL_tan(double x) { return tan(x); }
- #define tan(x) CSL_tan(x)
- static double CSL_tanh(double x){ return tanh(x); }
- #define tanh(x) CSL_tanh(x)
- #endif
- #ifdef __LCC__
- /*
- * Dec 00: LCC seems to be happier with these...
- */
- static double mycos(double a)
- {
- return cos(a);
- }
- static double mysin(double a)
- {
- return sin(a);
- }
- #undef cos
- #undef sin
- #define cos mycos
- #define sin mysin
- #endif
- #ifdef COMMON
- static trigfn_record const trig_functions[] =
- {
- {racos, iacos, cacos}, /* acos 0 inverse cos, rads, [0, pi) */
- {racosd, iacosd, cacosd}, /* acosd 1 inverse cos, degs, [0, 180) */
- {racosh, iacosh, cacosh}, /* acosh 2 inverse hyperbolic cosine */
- {racot, 0, cacot}, /* acot 3 inverse cot, rads, (0, pi) */
- {racotd, 0, cacotd}, /* acotd 4 inverse cot, degs, (0, 180) */
- {racoth, iacoth, cacoth}, /* acoth 5 inverse hyperbolic cotangent */
- {racsc, iacsc, cacsc}, /* acsc 6 inverse cosec, [-pi/2, pi/2] */
- {racscd, iacscd, cacscd}, /* acscd 7 inverse cosec, degs, [-90, 90] */
- {racsch, 0, cacsch}, /* acsch 8 inverse hyperbolic cosecant */
- {rasec, iasec, casec}, /* asec 9 inverse sec, rads, [0, pi) */
- {rasecd, iasecd, casecd}, /* asecd 10 inverse sec, degs, [0, 180) */
- {rasech, iasech, casech}, /* asech 11 inverse hyperbolic secant */
- {rasin, iasin, casin}, /* asin 12 inverse sin, rads, [-pi/2, pi/2] */
- {rasind, iasind, casind}, /* asind 13 inverse sin, degs, [-90, 90] */
- {CSLasinh, 0, casinh}, /* asinh 14 inverse hyperbolic sin */
- {atan, 0, catan}, /* atan 15 1-arg inverse tan, (-pi/2, pi/2) */
- {ratand, 0, catand}, /* atand 16 inverse tan, degs, (-90, 90) */
- {0, 0, 0}, /* atan2 17 2-arg inverse tan, [0, 2pi) */
- {0, 0, 0}, /* atan2d 18 2-arg inverse tan, degs, [0, 360) */
- {ratanh, iatanh, catanh}, /* atanh 19 inverse hyperbolic tan */
- {rcbrt, 0, ccbrt}, /* cbrt 20 cube root */
- {cos, 0, Ccos}, /* cos 21 cosine, rads */
- {rcosd, 0, ccosd}, /* cosd 22 cosine, degs */
- {cosh, 0, ccosh}, /* cosh 23 hyperbolic cosine */
- {rcot, 0, ccot}, /* cot 24 cotangent, rads */
- {rcotd, 0, ccotd}, /* cotd 25 cotangent, degs */
- {rcoth, 0, ccoth}, /* coth 26 hyperbolic cotangent */
- {rcsc, 0, ccsc}, /* csc 27 cosecant, rads */
- {rcscd, 0, ccscd}, /* cscd 28 cosecant, degs */
- {rcsch, 0, ccsch}, /* csch 29 hyperbolic cosecant */
- {exp, 0, Cexp}, /* exp 30 exp(x) = e^z, e approx 2.71828 */
- {0, 0, 0}, /* expt 31 expt(a,b) = a^b */
- {0, 0, 0}, /* hypot 32 hypot(a,b) = sqrt(a^2+b^2) */
- {rln, iln, Cln}, /* ln 33 log base e, e approx 2.71828 */
- {0, 0, 0}, /* log 34 2-arg log */
- {rlog10, ilog10, clog10}, /* log10 35 log to base 10 */
- {rsec, 0, csec}, /* sec 36 secant, rads */
- {rsecd, 0, csecd}, /* secd 37 secant, degs */
- {rsech, 0, csech}, /* sech 38 hyperbolic secant */
- {sin, 0, csin}, /* sin 39 sine, rads */
- {rsind, 0, csind}, /* sind 40 sine, degs */
- {sinh, 0, csinh}, /* sinh 41 hyperbolic sine */
- {rsqrt, isqrt, csqrt}, /* sqrt 42 square root */
- {tan, 0, ctan}, /* tan 43 tangent, rads */
- {rtand, 0, ctand}, /* tand 44 tangent, degs */
- {tanh, 0, ctanh} /* tanh 45 hyperbolic tangent */
- };
- #else
- static trigfn_record const trig_functions[] =
- {
- {racos, iacos}, /* acos 0 inverse cosine, rads, [0, pi) */
- {racosd, iacosd}, /* acosd 1 inverse cosine, degs, [0, 180) */
- {racosh, iacosh}, /* acosh 2 inverse hyperbolic cosine */
- {racot, 0}, /* acot 3 inverse cotangent, rads, (0, pi) */
- {racotd, 0}, /* acotd 4 inverse cotangent, degs, (0, 180) */
- {racoth, iacoth}, /* acoth 5 inverse hyperbolic cotangent */
- {racsc, iacsc}, /* acsc 6 inverse cosecant, rads, [-pi/2, pi/2] */
- {racscd, iacscd}, /* acscd 7 inverse cosecant, degs, [-90, 90] */
- {racsch, 0}, /* acsch 8 inverse hyperbolic cosecant */
- {rasec, iasec}, /* asec 9 inverse secant, rads, [0, pi) */
- {rasecd, iasecd}, /* asecd 10 inverse secant, degs, [0, 180) */
- {rasech, iasech}, /* asech 11 inverse hyperbolic secant */
- {rasin, iasin}, /* asin 12 inverse sine, rads, [-pi/2, pi/2] */
- {rasind, iasind}, /* asind 13 inverse sine, degs, [-90, 90] */
- {CSLasinh, 0}, /* asinh 14 inverse hyperbolic sine */
- {atan, 0}, /* atan 15 1-arg inverse tangent, (-pi/2, pi/2) */
- {ratand, 0}, /* atand 16 1-arg inverse tangent, degs, (-90, 90) */
- {0, 0}, /* atan2 17 2-arg inverse tangent, [0, 2pi) */
- {0, 0}, /* atan2d 18 2-arg inverse tangent, degs, [0, 360) */
- {ratanh, iatanh}, /* atanh 19 inverse hyperbolic tangent */
- {rcbrt, 0}, /* cbrt 20 cube root */
- {cos, 0}, /* cos 21 cosine, rads */
- {rcosd, 0}, /* cosd 22 cosine, degs */
- {cosh, 0}, /* cosh 23 hyperbolic cosine */
- {rcot, 0}, /* cot 24 cotangent, rads */
- {rcotd, 0}, /* cotd 25 cotangent, degs */
- {rcoth, 0}, /* coth 26 hyperbolic cotangent */
- {rcsc, 0}, /* csc 27 cosecant, rads */
- {rcscd, 0}, /* cscd 28 cosecant, degs */
- {rcsch, 0}, /* csch 29 hyperbolic cosecant */
- {exp, 0}, /* exp 30 exp(x) = e^z, e approx 2.71828 */
- {0, 0}, /* expt 31 expt(a,b) = a^b */
- {0, 0}, /* hypot 32 hypot(a,b) = sqrt(a^2+b^2) */
- {rln, iln}, /* ln 33 log base e, e approx 2.71828 */
- {0, 0}, /* log 34 2-arg log. log(a,b) is log of a base b */
- {rlog10, ilog10}, /* log10 35 log to base 10 */
- {rsec, 0}, /* sec 36 secant, rads */
- {rsecd, 0}, /* secd 37 secant, degs */
- {rsech, 0}, /* sech 38 hyperbolic secant */
- {sin, 0}, /* sin 39 sine, rads */
- {rsind, 0}, /* sind 40 sine, degs */
- {sinh, 0}, /* sinh 41 hyperbolic sine */
- {rsqrt, isqrt}, /* sqrt 42 square root */
- {tan, 0}, /* tan 43 tangent, rads */
- {rtand, 0}, /* tand 44 tangent, degs */
- {tanh, 0} /* tanh 45 hyperbolic tangent */
- };
- #endif
- static Lisp_Object Ltrigfn(unsigned int which_one, Lisp_Object a)
- /*
- * This one piece of code does the type-dispatch for the main collection
- * of elementary functions.
- */
- {
- double d;
- Lisp_Object nil = C_nil;
- #ifndef COMMON
- int32 restype = TYPE_DOUBLE_FLOAT;
- #else
- int32 restype = TYPE_SINGLE_FLOAT;
- #endif
- if (which_one > 45) return aerror("trigfn internal error");
- switch ((int)a & TAG_BITS)
- {
- case TAG_FIXNUM:
- d = (double)int_of_fixnum(a);
- break;
- #ifdef COMMON
- case TAG_SFLOAT:
- { Float_union aa;
- aa.i = a - TAG_SFLOAT;
- d = (double)aa.f;
- restype = 0;
- break;
- }
- #endif
- case TAG_NUMBERS:
- { int32 ha = type_of_header(numhdr(a));
- switch (ha)
- {
- case TYPE_BIGNUM:
- #ifdef COMMON
- case TYPE_RATNUM:
- #endif
- d = float_of_number(a);
- break;
- #ifdef COMMON
- case TYPE_COMPLEX_NUM:
- { Complex c1, c2;
- c1.real = float_of_number(real_part(a));
- c1.imag = float_of_number(imag_part(a));
- c2 = (*trig_functions[which_one].complex)(c1);
- /* make_complex_float does the onevalue() for me */
- return make_complex_float(c2, a);
- }
- #endif
- default:
- return aerror1("bad arg for trig function", a);
- }
- break;
- }
- case TAG_BOXFLOAT:
- restype = type_of_header(flthdr(a));
- d = float_of_number(a);
- break;
- default:
- return aerror1("bad arg for trig function", a);
- }
- { double (MS_CDECL *im)(double) = trig_functions[which_one].imag;
- if (im == 0)
- /*
- * I really suspect I should do something writh errno here to
- * keep track of when things go wrong. Doing so feels fairly
- * messy, but it is necessary if I am to raise exceptions for
- * Lisp if an elementary function leads to overflow.
- */
- { double (MS_CDECL *rl)(double) = trig_functions[which_one].real;
- if (rl == 0) return aerror("unimplemented trig function");
- d = (*rl)(d);
- a = make_boxfloat(d, restype);
- errexit();
- return onevalue(a);
- }
- else
- { double c1r, c1i;
- Lisp_Object nil;
- #ifdef COMMON
- Lisp_Object rp, ip;
- #endif
- double (MS_CDECL *rl)(double) = trig_functions[which_one].real;
- if (rl == 0) return aerror("unimplemented trig function");
- c1r = (*rl)(d);
- c1i = (*im)(d);
- /*
- * if the imaginary part of the value is zero then I will return a real
- * answer - this is correct since the original argument was real, but
- * it has to be done by hand here because normally complex values with
- * zero imaginary part remain complex.
- */
- if (c1i == 0.0)
- {
- a = make_boxfloat(c1r, restype);
- errexit();
- return onevalue(a);
- }
- #ifdef COMMON
- rp = make_boxfloat(c1r, restype);
- errexit();
- ip = make_boxfloat(c1i, restype);
- errexit();
- a = make_complex(rp, ip);
- errexit();
- return onevalue(a);
- #else
- return aerror1("bad arg for trig function", a);
- #endif
- }
- }
- }
- static Lisp_Object makenum(Lisp_Object a, int32 n)
- /*
- * Make the value n, but type-consistent with the object a. Usually
- * used with n=0 or n=1
- */
- {
- #ifndef COMMON
- int32 restype = TYPE_DOUBLE_FLOAT;
- #else
- int32 restype = TYPE_SINGLE_FLOAT;
- #endif
- Lisp_Object nil = C_nil;
- switch ((int)a & TAG_BITS)
- {
- case TAG_FIXNUM:
- return fixnum_of_int(n);
- #ifdef COMMON
- case TAG_SFLOAT:
- { Float_union aa;
- aa.f = (float)n;
- return (aa.i & ~(int32)0xf) + TAG_SFLOAT;
- }
- #endif
- case TAG_NUMBERS:
- { int32 ha = type_of_header(numhdr(a));
- switch (ha)
- {
- case TYPE_BIGNUM:
- #ifdef COMMON
- case TYPE_RATNUM:
- #endif
- return fixnum_of_int(n);
- #ifdef COMMON
- case TYPE_COMPLEX_NUM:
- { Lisp_Object rr, ii;
- a = real_part(a);
- rr = makenum(a, 1);
- errexit();
- ii = makenum(a, 0);
- errexit();
- a = make_complex(rr, ii);
- errexit();
- return onevalue(a);
- }
- #endif
- default:
- return aerror1("bad arg for makenumber", a);
- }
- break;
- }
- case TAG_BOXFLOAT:
- restype = type_of_header(flthdr(a));
- a = make_boxfloat((double)n, restype);
- errexit();
- return onevalue(a);
- default:
- return aerror1("bad arg for makenumber", a);
- }
- }
- static Lisp_Object CSLpowi(Lisp_Object a, unsigned32 n)
- /*
- * Raise a to the power n by repeated multiplication. The name is CSLpowi
- * rather than just powi because some miserable C compilers come with an
- * external function called powi in <math.h> and then moan about the
- * name clash.
- */
- {
- Lisp_Object nil;
- if (n == 0) return makenum(a, 1); /* value 1 of appropriate type */
- else if (n == 1) return a;
- else if ((n & 1) == 0)
- { a = CSLpowi(a, n/2);
- errexit();
- return times2(a, a);
- }
- else
- { Lisp_Object b;
- push(a);
- b = CSLpowi(a, n/2);
- nil = C_nil;
- if (!exception_pending()) b = times2(b, b);
- pop(a);
- errexit();
- return times2(a, b);
- }
- }
- #ifdef COMMON
- static Complex MS_CDECL complex_of_number(Lisp_Object a)
- {
- Complex z;
- if (is_numbers(a) && is_complex(a))
- { z.real = float_of_number(real_part(a));
- z.imag = float_of_number(imag_part(a));
- }
- else
- { z.real = float_of_number(a);
- z.imag = 0.0;
- }
- return z;
- }
- #endif
- static Lisp_Object Lhypot(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- double u, v, r;
- u = float_of_number(a);
- v = float_of_number(b);
- if (u < 0.0) u = -u;
- if (v < 0.0) v = -v;
- if (u > v) { r = u; u = v; v = r; }
- /* Now 0.0 < u < v */
- if (u + v == v) r = v; /* u is very small compared to v */
- else
- { r = u/v;
- /*
- * A worry I have is that the multiplication on the following line can
- * overflow, blowing me out of the water.
- */
- r = v * sqrt(1.0 + r*r);
- }
- a = make_boxfloat(r, TYPE_DOUBLE_FLOAT);
- errexit();
- return onevalue(a);
- }
- Lisp_Object Lexpt(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- double d, e;
- int32 restype, n;
- #ifdef COMMON
- Lisp_Object w;
- Complex c1, c2, c3;
- #endif
- /*
- * I take special action on 1, 0 and -1 raised to a power that is an integer
- * or a bignum. In part this is because raising 1 to a power may be a fairly
- * common case worthy of special care, but the main pressure came because
- * these numbers raised to bignum powers can still have fixnum results, and
- * the value can be computed fast.
- */
- if (a == fixnum_of_int(1) ||
- a == fixnum_of_int(0) ||
- a == fixnum_of_int(-1))
- { if (is_fixnum(b))
- { n = int_of_fixnum(b);
- switch (int_of_fixnum(a))
- {
- case 1: return onevalue(a);
- case 0: if (n < 0) return aerror2("expt", a, b);
- /* In Common Lisp (expt 0 0) is defined to be 0 */
- else if (n == 0) return onevalue(fixnum_of_int(1));
- else return onevalue(a);
- case -1: if (n & 1) return onevalue(a);
- else return onevalue(fixnum_of_int(1));
- }
- }
- else if (is_numbers(b) && is_bignum(b))
- { switch (int_of_fixnum(a))
- {
- case 1: return onevalue(a);
- case 0: n = bignum_digits(b)[(bignum_length(b)-CELL-4)/4];
- if (n <= 0) return aerror2("expt", a, b);
- else return onevalue(a);
- case -1: n = bignum_digits(b)[0];
- if (n & 1) return onevalue(a);
- else return onevalue(fixnum_of_int(1));
- }
- }
- }
- #ifdef COMMON
- /*
- * In a similar vein I will take special action on #C(0 1) and #C(0 -1)
- * raise to integer (including bignum) powers.
- */
- if (is_numbers(a) && is_complex(a) && real_part(a)==fixnum_of_int(0) &&
- (imag_part(a) == fixnum_of_int(1) ||
- imag_part(a) == fixnum_of_int(-1)))
- { n = -1;
- if (is_fixnum(b)) n = int_of_fixnum(b) & 3;
- else if (is_numbers(b) && is_bignum(b))
- n = bignum_digits(b)[0] & 3;
- switch (n)
- {
- case 0: return onevalue(fixnum_of_int(1));
- case 2: return onevalue(fixnum_of_int(-1));
- case 1:
- case 3: if (int_of_fixnum(imag_part(a)) == 1) n ^= 2;
- a = make_complex(fixnum_of_int(0),
- fixnum_of_int((n & 2) ? 1 : -1));
- errexit();
- return onevalue(a);
- default: break;
- }
- }
- #endif
- if (is_fixnum(b)) /* bignum exponents would yield silly values! */
- { n = int_of_fixnum(b);
- if (n < 0)
- { a = CSLpowi(a, (unsigned32)(-n));
- nil = C_nil;
- #ifdef COMMON
- if (!exception_pending()) a = CLquot2(fixnum_of_int(1), a);
- #else
- if (!exception_pending()) a = quot2(fixnum_of_int(1), a);
- #endif
- }
- else a = CSLpowi(a, (unsigned32)n);
- return onevalue(a);
- }
- #ifdef COMMON
- if (is_numbers(a) && is_complex(a)) w = real_part(a);
- else w = a;
- if (is_sfloat(w)) restype = 0;
- else
- if (is_bfloat(w)) restype = type_of_header(flthdr(w));
- else restype = TYPE_SINGLE_FLOAT;
- if (is_numbers(b) && is_complex(b)) w = real_part(b);
- else w = b;
- if (is_bfloat(w))
- { n = type_of_header(flthdr(w));
- if (restype == 0 || restype == TYPE_SINGLE_FLOAT ||
- (restype == TYPE_DOUBLE_FLOAT && n == TYPE_LONG_FLOAT))
- restype = n;
- }
- else if (restype == 0) restype = TYPE_SINGLE_FLOAT;
- #else
- restype = TYPE_DOUBLE_FLOAT;
- #endif
- #ifdef COMMON
- if ((is_numbers(a) && is_complex(a)) ||
- (is_numbers(b) && is_complex(b)))
- { c1 = complex_of_number(a);
- c2 = complex_of_number(b);
- c3 = Cpow(c1, c2);
- a = make_boxfloat(c3.real, restype);
- errexit();
- b = make_boxfloat(c3.imag, restype);
- errexit();
- a = make_complex(a, b);
- errexit();
- return onevalue(a);
- }
- #endif
- d = float_of_number(a);
- e = float_of_number(b);
- if (d < 0.0)
- #ifdef COMMON
- { c1.real = d; c1.imag = 0.0;
- c2.real = e; c2.imag = 0.0;
- c3 = Cpow(c1, c2);
- a = make_boxfloat(c3.real, restype);
- errexit();
- b = make_boxfloat(c3.imag, restype);
- errexit();
- a = make_complex(a, b);
- errexit();
- return onevalue(a);
- }
- #else
- return aerror1("bad arg for expt", b);
- #endif
- d = pow(d, e);
- a = make_boxfloat(d, restype);
- errexit();
- return onevalue(a);
- }
- Lisp_Object Llog_2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- /*
- * Log with specified base.
- */
- {
- push(b);
- a = Ltrigfn(33, a);
- pop(b);
- errexit();
- push(a);
- b = Ltrigfn(33, b);
- pop(a);
- errexit();
- return quot2(a, b);
- }
- #ifdef COMMON
- static Lisp_Object Lisqrt(Lisp_Object nil, Lisp_Object a)
- {
- double d;
- CSL_IGNORE(nil);
- switch ((int)a & TAG_BITS)
- {
- case TAG_FIXNUM:
- d = (double)int_of_fixnum(a);
- break;
- case TAG_NUMBERS:
- { int32 ha = type_of_header(numhdr(a));
- switch (ha)
- {
- case TYPE_BIGNUM:
- d = float_of_number(a);
- break;
- default:
- return aerror1("bad arg for isqrt", a);
- }
- break;
- }
- default:
- return aerror1("bad arg for isqrt", a);
- }
- d = sqrt(d);
- /* /* This is not anything like good enough yet */
- return onevalue(fixnum_of_int((int32)d));
- }
- #endif
- Lisp_Object Labsval(Lisp_Object nil, Lisp_Object a)
- /*
- * I call this Labsval not Labs because a non-case-sensitive linker
- * would confuse Labs with labs, and labs is defined in the C libraries...
- * Of course I do not think that case-insensitive linkers should be allowed
- * to remain in service....
- */
- {
- switch ((int)a & TAG_BITS)
- {
- case TAG_FIXNUM:
- #ifdef COMMON
- case TAG_SFLOAT:
- #endif
- break;
- case TAG_NUMBERS:
- { int32 ha = type_of_header(numhdr(a));
- switch (ha)
- {
- case TYPE_BIGNUM:
- #ifdef COMMON
- case TYPE_RATNUM:
- #endif
- break;
- #ifdef COMMON
- case TYPE_COMPLEX_NUM:
- { Complex c1;
- double d;
- c1.real = float_of_number(real_part(a));
- c1.imag = float_of_number(imag_part(a));
- d = Cabs(c1);
- /* /* I wonder if I am allowed to promote short or single values to
- double precision here? */
- a = make_boxfloat(d, TYPE_DOUBLE_FLOAT);
- errexit();
- return onevalue(a);
- }
- #endif
- default:
- return aerror1("bad arg for abs", a);
- }
- break;
- }
- case TAG_BOXFLOAT:
- break;
- default:
- return aerror1("bad arg for abs", a);
- }
- if (minusp(a))
- { nil = C_nil;
- if (!exception_pending()) a = negate(a);
- }
- errexit();
- return onevalue(a);
- }
- #ifdef COMMON
- static Lisp_Object Lphase(Lisp_Object nil, Lisp_Object a)
- {
- CSLbool s;
- double d;
- if (is_numbers(a) && is_complex(a))
- return Latan2(nil, imag_part(a), real_part(a));
- s = minusp(a);
- errexit();
- if (s) d = -_pi;
- else d = _pi;
- a = make_boxfloat(d, TYPE_DOUBLE_FLOAT);
- errexit();
- return onevalue(a);
- /* /* Wrong precision, I guess */
- }
- static Lisp_Object Lsignum(Lisp_Object nil, Lisp_Object a)
- {
- /*
- * This seems an expensive way of doing things - huh? Maybe complex values? */
- CSLbool z;
- Lisp_Object w;
- z = zerop(a);
- nil = C_nil;
- if (z || exception_pending()) return onevalue(a);
- push(a);
- w = Labsval(nil, a);
- pop(a);
- errexit();
- a = quot2(a, w);
- errexit();
- return onevalue(a);
- }
- static Lisp_Object Lcis(Lisp_Object env, Lisp_Object a)
- /*
- * Implement as exp(i*a) - this permits complex args which goes
- * beyond the specification of Common Lisp.
- */
- {
- Lisp_Object ii, nil;
- CSL_IGNORE(env);
- push(a);
- ii = make_complex(fixnum_of_int(0), fixnum_of_int(1));
- pop(a);
- errexit();
- /*
- * it seems a bit gross to multiply by i by calling times2(), but
- * doing so avoids loads of messy type dispatch code here and
- * I am not over-worried about performance at this level (yet).
- */
- a = times2(a, ii);
- errexit();
- return Ltrigfn(30, a); /* exp() */
- }
- #endif
- #ifdef COMMON
- Lisp_Object Latan(Lisp_Object env, Lisp_Object a)
- {
- CSL_IGNORE(env);
- return Ltrigfn(15, a); /* atan() */
- }
- Lisp_Object Latan_2(Lisp_Object env, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(env);
- return Latan2(env, a, b);
- }
- #else
- Lisp_Object Latan(Lisp_Object env, Lisp_Object a)
- {
- CSL_IGNORE(env);
- return Ltrigfn(15, a); /* atan() */
- }
- #endif
- Lisp_Object Latan2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- double u, v, r;
- int q = 0;
- v = float_of_number(a);
- u = float_of_number(b);
- if (u < 0.0) u = -u, q = 1;
- if (v < 0.0) v = -v, q |= 2;
- if (v > u) { r = u; u = v; v = r; q |= 4; }
- if (u == 0.0 && v == 0.0) r = 0.0;
- else
- { r = atan(v/u);
- switch (q)
- {
- default:
- case 0: break;
- case 1: r = _pi - r;
- break;
- case 2: r = -r;
- break;
- case 3: r = -_pi + r;
- break;
- case 4: r = _half_pi - r;
- break;
- case 5: r = _half_pi + r;
- break;
- case 6: r = -_half_pi + r;
- break;
- case 7: r = -_half_pi - r;
- break;
- }
- }
- a = make_boxfloat(r, TYPE_DOUBLE_FLOAT);
- errexit();
- return onevalue(a);
- }
- Lisp_Object Latan2d(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- double u, v, r;
- int q = 0;
- v = float_of_number(a);
- u = float_of_number(b);
- if (u < 0.0) u = -u, q = 1;
- if (v < 0.0) v = -v, q |= 2;
- if (v > u) { r = u; u = v; v = r; q |= 4; }
- if (u == 0.0 && v == 0.0) r = 0.0;
- else
- { r = n180pi*atan(v/u);
- switch (q)
- {
- default:
- case 0: break;
- case 1: r = 180.0 - r;
- break;
- case 2: r = -r;
- break;
- case 3: r = -180.0 + r;
- break;
- case 4: r = 90.0 - r;
- break;
- case 5: r = 90.0 + r;
- break;
- case 6: r = -90.0 + r;
- break;
- case 7: r = -90.0 - r;
- break;
- }
- }
- a = make_boxfloat(r, TYPE_DOUBLE_FLOAT);
- errexit();
- return onevalue(a);
- }
- Lisp_Object Lacos(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(0, a);
- }
- Lisp_Object Lacosd(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(1, a);
- }
- Lisp_Object Lacosh(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(2, a);
- }
- Lisp_Object Lacot(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(3, a);
- }
- Lisp_Object Lacotd(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(4, a);
- }
- Lisp_Object Lacoth(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(5, a);
- }
- Lisp_Object Lacsc(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(6, a);
- }
- Lisp_Object Lacscd(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(7, a);
- }
- Lisp_Object Lacsch(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(8, a);
- }
- Lisp_Object Lasec(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(9, a);
- }
- Lisp_Object Lasecd(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(10, a);
- }
- Lisp_Object Lasech(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(11, a);
- }
- Lisp_Object Lasin(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(12, a);
- }
- Lisp_Object Lasind(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(13, a);
- }
- Lisp_Object Lasinh(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(14, a);
- }
- /* code 15 is for atan */
- Lisp_Object Latand(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(16, a);
- }
- /* code 17 is atan2, 18 is atan2d */
- Lisp_Object Latanh(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(19, a);
- }
- Lisp_Object Lcbrt(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(20, a);
- }
- Lisp_Object Lcos(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(21, a);
- }
- Lisp_Object Lcosd(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(22, a);
- }
- Lisp_Object Lcosh(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(23, a);
- }
- Lisp_Object Lcot(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(24, a);
- }
- Lisp_Object Lcotd(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(25, a);
- }
- Lisp_Object Lcoth(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(26, a);
- }
- Lisp_Object Lcsc(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(27, a);
- }
- Lisp_Object Lcscd(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(28, a);
- }
- Lisp_Object Lcsch(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(29, a);
- }
- Lisp_Object Lexp(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(30, a);
- }
- /* 31 is expt, 32 is hypot */
- Lisp_Object Lln(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(33, a);
- }
- /* 34 is 2-arg log */
- Lisp_Object Llog10(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(35, a);
- }
- Lisp_Object Lsec(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(36, a);
- }
- Lisp_Object Lsecd(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(37, a);
- }
- Lisp_Object Lsech(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(38, a);
- }
- Lisp_Object Lsin(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(39, a);
- }
- Lisp_Object Lsind(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(40, a);
- }
- Lisp_Object Lsinh(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(41, a);
- }
- Lisp_Object Lsqrt(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(42, a);
- }
- Lisp_Object Ltan(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(43, a);
- }
- Lisp_Object Ltand(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(44, a);
- }
- Lisp_Object Ltanh(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- return Ltrigfn(45, a);
- }
- setup_type const arith10_setup[] =
- {
- {"abs", Labsval, too_many_1, wrong_no_1},
- {"acos", Lacos, too_many_1, wrong_no_1},
- {"acosd", Lacosd, too_many_1, wrong_no_1},
- {"acosh", Lacosh, too_many_1, wrong_no_1},
- {"acot", Lacot, too_many_1, wrong_no_1},
- {"acotd", Lacotd, too_many_1, wrong_no_1},
- {"acoth", Lacoth, too_many_1, wrong_no_1},
- {"acsc", Lacsc, too_many_1, wrong_no_1},
- {"acscd", Lacscd, too_many_1, wrong_no_1},
- {"acsch", Lacsch, too_many_1, wrong_no_1},
- {"asec", Lasec, too_many_1, wrong_no_1},
- {"asecd", Lasecd, too_many_1, wrong_no_1},
- {"asech", Lasech, too_many_1, wrong_no_1},
- {"asin", Lasin, too_many_1, wrong_no_1},
- {"asind", Lasind, too_many_1, wrong_no_1},
- {"asinh", Lasinh, too_many_1, wrong_no_1},
- {"atand", Latand, too_many_1, wrong_no_1},
- {"atan2", too_few_2, Latan2, wrong_no_2},
- {"atan2d", too_few_2, Latan2d, wrong_no_2},
- {"atanh", Latanh, too_many_1, wrong_no_1},
- {"cbrt", Lcbrt, too_many_1, wrong_no_1},
- {"cos", Lcos, too_many_1, wrong_no_1},
- {"cosd", Lcosd, too_many_1, wrong_no_1},
- {"cosh", Lcosh, too_many_1, wrong_no_1},
- {"cot", Lcot, too_many_1, wrong_no_1},
- {"cotd", Lcotd, too_many_1, wrong_no_1},
- {"coth", Lcoth, too_many_1, wrong_no_1},
- {"csc", Lcsc, too_many_1, wrong_no_1},
- {"cscd", Lcscd, too_many_1, wrong_no_1},
- {"csch", Lcsch, too_many_1, wrong_no_1},
- {"exp", Lexp, too_many_1, wrong_no_1},
- {"expt", too_few_2, Lexpt, wrong_no_2},
- {"hypot", too_few_2, Lhypot, wrong_no_2},
- {"ln", Lln, too_many_1, wrong_no_1},
- {"log", Lln, Llog_2, wrong_no_2},
- {"log10", Llog10, too_many_1, wrong_no_1},
- {"sec", Lsec, too_many_1, wrong_no_1},
- {"secd", Lsecd, too_many_1, wrong_no_1},
- {"sech", Lsech, too_many_1, wrong_no_1},
- {"sin", Lsin, too_many_1, wrong_no_1},
- {"sind", Lsind, too_many_1, wrong_no_1},
- {"sinh", Lsinh, too_many_1, wrong_no_1},
- {"sqrt", Lsqrt, too_many_1, wrong_no_1},
- {"tan", Ltan, too_many_1, wrong_no_1},
- {"tand", Ltand, too_many_1, wrong_no_1},
- {"tanh", Ltanh, too_many_1, wrong_no_1},
- #ifdef COMMON
- {"cis", Lcis, too_many_1, wrong_no_1},
- {"isqrt", Lisqrt, too_many_1, wrong_no_1},
- {"phase", Lphase, too_many_1, wrong_no_1},
- {"signum", Lsignum, too_many_1, wrong_no_1},
- {"atan", Latan, Latan_2, wrong_no_1},
- #else
- {"atan", Latan, too_many_1, wrong_no_1},
- {"logb", too_few_2, Llog_2, wrong_no_2},
- #endif
- {NULL, 0, 0, 0}
- };
- /* end of arith10.c */
|