XIDEAL.LOG 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
  2. % Test file for XIDEAL package (Groebner bases for exterior algebra)
  3. % Just make sure excalc has been loaded
  4. load_package excalc$
  5. *** ^ redefined
  6. % Declare exterior form variables
  7. pform x=0,y=0,z=0,t=0,u=1,v=1,w=1,f(i)=1,h=0,hx=0,ht=0;
  8. % Set switches for reduced Groebner bases in graded ideals
  9. on xfullreduce;
  10. % Reductions with xmodulo (all should be zero)
  11. d x^d y xmodulo {d x - d y};
  12. 0
  13. d x^d y^d z xmodulo {d x^d y - d z^d t};
  14. 0
  15. d x^d z^d t xmodulo {d x^d y - d z^d t};
  16. 0
  17. v^d x^d y xmodulo {d t^u - v^w,
  18. w^u - d x^d y};
  19. 0
  20. d t^u^d z xmodulo {d t^u - v^w,
  21. u^d z - d x^d y,
  22. d t^d y - d x^v};
  23. 0
  24. f(3)^f(4)^f(5)^f(6)
  25. xmodulo {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)};
  26. 0
  27. f(1)^f(4)^f(5)^f(6)
  28. xmodulo {f(1)^f(2) + f(2)^f(3) + f(3)^f(4) + f(4)^f(5) + f(5)^f(6)};
  29. 0
  30. % Exterior system for heat equation on 1st jet bundle
  31. S := {d h - ht*d t - hx*d x,
  32. d ht^d t + d hx^d x,
  33. d hx^d t - ht*d x^d t};
  34. s := {d h - d t*ht - d x*hx,
  35. d ht^d t + d hx^d x,
  36. d hx^d t + d t^d x*ht}
  37. % Check that it's closed.
  38. dS := (for each a in S collect d a) xmodulo S;
  39. ds := {}
  40. % Some Groebner bases (0-forms generate the trivial ideal)
  41. gb := xideal {x, d y};
  42. gb := {1}
  43. gb := xideal {f(1)^f(2) + f(3)^f(4)};
  44. 1 2 3 4
  45. gb := {f ^f + f ^f ,
  46. 1 3 4
  47. f ^f ^f ,
  48. 2 3 4
  49. f ^f ^f }
  50. gb := xideal {f(1)^f(2), f(1)^f(3)+f(2)^f(4)+f(5)^f(6)};
  51. 1 2
  52. gb := {f ^f ,
  53. 2 5 6
  54. f ^f ^f ,
  55. 1 5 6
  56. f ^f ^f ,
  57. 1 3 2 4 5 6
  58. f ^f + f ^f + f ^f ,
  59. 2 3 4 3 5 6
  60. - f ^f ^f + f ^f ^f ,
  61. 3 4 5 6
  62. - f ^f ^f ^f }
  63. % The same again, but not reduced
  64. off xfullreduce;
  65. gb := xideal {x, d y};
  66. gb := {1}
  67. gb := xideal {f(1)^f(2) + f(3)^f(4)};
  68. 1 2 3 4
  69. gb := {f ^f + f ^f ,
  70. 1 3 4
  71. f ^f ^f ,
  72. 2 3 4
  73. f ^f ^f }
  74. gb := xideal {f(1)^f(2), f(1)^f(3)+f(2)^f(4)+f(5)^f(6)};
  75. 1 3 2 4 5 6
  76. gb := {f ^f + f ^f + f ^f ,
  77. 1 2 4 1 5 6
  78. f ^f ^f + f ^f ^f ,
  79. 2 3 4 3 5 6
  80. - f ^f ^f + f ^f ^f ,
  81. 1 2 5 6
  82. - f ^f ^f ^f ,
  83. 1 4 5 6
  84. - f ^f ^f ^f ,
  85. 2 3 5 6
  86. f ^f ^f ^f ,
  87. 3 4 5 6
  88. - f ^f ^f ^f ,
  89. 2 4 5 6
  90. 2*f ^f ^f ^f ,
  91. 1 2
  92. f ^f ,
  93. 2 5 6
  94. f ^f ^f ,
  95. 1 5 6
  96. f ^f ^f }
  97. % Reductions with a ready Groebner basis (not all zero)
  98. on xfullreduce;
  99. gb := xideal {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)};
  100. 1 2 3 4 5 6
  101. gb := {f ^f + f ^f + f ^f ,
  102. 1 3 4 1 5 6
  103. f ^f ^f + f ^f ^f ,
  104. 2 3 4 2 5 6
  105. f ^f ^f + f ^f ^f ,
  106. 1 3 5 6
  107. - f ^f ^f ^f ,
  108. 1 4 5 6
  109. - f ^f ^f ^f ,
  110. 2 3 5 6
  111. - f ^f ^f ^f ,
  112. 2 4 5 6
  113. - f ^f ^f ^f ,
  114. 3 4 5 6
  115. 2*f ^f ^f ^f }
  116. f(1)^f(3)^f(4) xmodulop gb;
  117. 1 5 6
  118. - f ^f ^f
  119. f(3)^f(4)^f(5)^f(6) xmodulop gb;
  120. 0
  121. % Non-graded ideals
  122. on xfullreduce;
  123. % Left and right ideals are no longer the same
  124. d t^(d z+d x^d y) xmodulo {d z+d x^d y};
  125. 0
  126. (d z+d x^d y)^d t xmodulo {d z+d x^d y};
  127. - 2*d t^d z
  128. % Higher order forms can now reduce lower order ones
  129. d x xmodulo {d y^d z + d x,d x^d y + d z};
  130. 0
  131. % Anything with a 0-form term generates the trivial ideal!!
  132. gb := xideal {x + d y};
  133. gb := {1}
  134. gb := xideal {1 + f(1) + f(1)^f(2) + f(2)^f(3)^f(4) + f(3)^f(4)^f(5)^f(6)};
  135. gb := {1}
  136. end;
  137. (TIME: xideal 1210 1250)