123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940 |
- REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
- *** @ already defined as operator
- % test symmetry package
- % implementation of theory of linear representations
- % for small groups
- availablegroups();
- {z2,k4,d3,d4,d5,d6,c3,c4,c5,c6,s4,a4}
- printgroup(D4);
- {id,rd4,rot2d4,rot3d4,sd4,srd4,sr2d4,sr3d4}
- generators(D4);
- {rd4,sd4}
- charactertable(D4);
- {{d4,{{id},1},{{rd4,rot3d4},1},{{rot2d4},1},{{sd4,sr2d4},1},{{sr3d4,srd4},1}},
- {d4,{{id},1},{{rd4,rot3d4},1},{{rot2d4},1},{{sd4,sr2d4},-1},{{sr3d4,srd4},-1}},
- {d4,{{id},1},{{rd4,rot3d4},-1},{{rot2d4},1},{{sd4,sr2d4},1},{{sr3d4,srd4},-1}},
- {d4,{{id},1},{{rd4,rot3d4},-1},{{rot2d4},1},{{sd4,sr2d4},-1},{{sr3d4,srd4},1}},
- {d4,{{id},2},{{rd4,rot3d4},0},{{rot2d4},-2},{{sd4,sr2d4},0},{{sr3d4,srd4},0}}}
- characternr(D4,1);
- {d4,{{id},1},{{rd4,rot3d4},1},{{rot2d4},1},{{sd4,sr2d4},1},{{sr3d4,srd4},1}}
- characternr(D4,2);
- {d4,{{id},1},{{rd4,rot3d4},1},{{rot2d4},1},{{sd4,sr2d4},-1},{{sr3d4,srd4},-1}}
- characternr(D4,3);
- {d4,{{id},1},{{rd4,rot3d4},-1},{{rot2d4},1},{{sd4,sr2d4},1},{{sr3d4,srd4},-1}}
- characternr(D4,4);
- {d4,{{id},1},{{rd4,rot3d4},-1},{{rot2d4},1},{{sd4,sr2d4},-1},{{sr3d4,srd4},1}}
- characternr(D4,5);
- {d4,{{id},2},{{rd4,rot3d4},0},{{rot2d4},-2},{{sd4,sr2d4},0},{{sr3d4,srd4},0}}
- irreduciblereptable(D4);
- {{d4,
- id=
- [1]
- ,
- rd4=
- [1]
- ,
- rot2d4=
- [1]
- ,
- rot3d4=
- [1]
- ,
- sd4=
- [1]
- ,
- srd4=
- [1]
- ,
- sr2d4=
- [1]
- ,
- sr3d4=
- [1]
- },
- {d4,
- id=
- [1]
- ,
- rd4=
- [1]
- ,
- rot2d4=
- [1]
- ,
- rot3d4=
- [1]
- ,
- sd4=
- [ - 1]
- ,
- srd4=
- [ - 1]
- ,
- sr2d4=
- [ - 1]
- ,
- sr3d4=
- [ - 1]
- },
- {d4,
- id=
- [1]
- ,
- rd4=
- [ - 1]
- ,
- rot2d4=
- [1]
- ,
- rot3d4=
- [ - 1]
- ,
- sd4=
- [1]
- ,
- srd4=
- [ - 1]
- ,
- sr2d4=
- [1]
- ,
- sr3d4=
- [ - 1]
- },
- {d4,
- id=
- [1]
- ,
- rd4=
- [ - 1]
- ,
- rot2d4=
- [1]
- ,
- rot3d4=
- [ - 1]
- ,
- sd4=
- [ - 1]
- ,
- srd4=
- [1]
- ,
- sr2d4=
- [ - 1]
- ,
- sr3d4=
- [1]
- },
- {d4,
- id=
- [1 0]
- [ ]
- [0 1]
- ,
- rd4=
- [ 0 1]
- [ ]
- [ - 1 0]
- ,
- rot2d4=
- [ - 1 0 ]
- [ ]
- [ 0 - 1]
- ,
- rot3d4=
- [0 - 1]
- [ ]
- [1 0 ]
- ,
- sd4=
- [1 0 ]
- [ ]
- [0 - 1]
- ,
- srd4=
- [0 1]
- [ ]
- [1 0]
- ,
- sr2d4=
- [ - 1 0]
- [ ]
- [ 0 1]
- ,
- sr3d4=
- [ 0 - 1]
- [ ]
- [ - 1 0 ]
- }}
- irreduciblerepnr(D4,1);
- {d4,
- id=
- [1]
- ,
- rd4=
- [1]
- ,
- rot2d4=
- [1]
- ,
- rot3d4=
- [1]
- ,
- sd4=
- [1]
- ,
- srd4=
- [1]
- ,
- sr2d4=
- [1]
- ,
- sr3d4=
- [1]
- }
- irreduciblerepnr(D4,2);
- {d4,
- id=
- [1]
- ,
- rd4=
- [1]
- ,
- rot2d4=
- [1]
- ,
- rot3d4=
- [1]
- ,
- sd4=
- [ - 1]
- ,
- srd4=
- [ - 1]
- ,
- sr2d4=
- [ - 1]
- ,
- sr3d4=
- [ - 1]
- }
- irreduciblerepnr(D4,3);
- {d4,
- id=
- [1]
- ,
- rd4=
- [ - 1]
- ,
- rot2d4=
- [1]
- ,
- rot3d4=
- [ - 1]
- ,
- sd4=
- [1]
- ,
- srd4=
- [ - 1]
- ,
- sr2d4=
- [1]
- ,
- sr3d4=
- [ - 1]
- }
- irreduciblerepnr(D4,4);
- {d4,
- id=
- [1]
- ,
- rd4=
- [ - 1]
- ,
- rot2d4=
- [1]
- ,
- rot3d4=
- [ - 1]
- ,
- sd4=
- [ - 1]
- ,
- srd4=
- [1]
- ,
- sr2d4=
- [ - 1]
- ,
- sr3d4=
- [1]
- }
- irreduciblerepnr(D4,5);
- {d4,
- id=
- [1 0]
- [ ]
- [0 1]
- ,
- rd4=
- [ 0 1]
- [ ]
- [ - 1 0]
- ,
- rot2d4=
- [ - 1 0 ]
- [ ]
- [ 0 - 1]
- ,
- rot3d4=
- [0 - 1]
- [ ]
- [1 0 ]
- ,
- sd4=
- [1 0 ]
- [ ]
- [0 - 1]
- ,
- srd4=
- [0 1]
- [ ]
- [1 0]
- ,
- sr2d4=
- [ - 1 0]
- [ ]
- [ 0 1]
- ,
- sr3d4=
- [ 0 - 1]
- [ ]
- [ - 1 0 ]
- }
- rr:=mat((1,0,0,0,0),
- (0,0,1,0,0),
- (0,0,0,1,0),
- (0,0,0,0,1),
- (0,1,0,0,0));
- [1 0 0 0 0]
- [ ]
- [0 0 1 0 0]
- [ ]
- rr := [0 0 0 1 0]
- [ ]
- [0 0 0 0 1]
- [ ]
- [0 1 0 0 0]
- sp:=mat((1,0,0,0,0),
- (0,0,1,0,0),
- (0,1,0,0,0),
- (0,0,0,0,1),
- (0,0,0,1,0));
- [1 0 0 0 0]
- [ ]
- [0 0 1 0 0]
- [ ]
- sp := [0 1 0 0 0]
- [ ]
- [0 0 0 0 1]
- [ ]
- [0 0 0 1 0]
- rep:={D4,rD4=rr,sD4=sp};
- rep := {d4,
- rd4=
- [1 0 0 0 0]
- [ ]
- [0 0 1 0 0]
- [ ]
- [0 0 0 1 0]
- [ ]
- [0 0 0 0 1]
- [ ]
- [0 1 0 0 0]
- ,
- sd4=
- [1 0 0 0 0]
- [ ]
- [0 0 1 0 0]
- [ ]
- [0 1 0 0 0]
- [ ]
- [0 0 0 0 1]
- [ ]
- [0 0 0 1 0]
- }
- canonicaldecomposition(rep);
- teta=2*teta1 + teta4 + teta5
- character(rep);
- {d4,{{id},5},{{rd4,rot3d4},1},{{rot2d4},1},{{sd4,sr2d4},1},{{sr3d4,srd4},3}}
- symmetrybasis(rep,1);
- [1 0 ]
- [ ]
- [ 1 ]
- [0 ---]
- [ 2 ]
- [ ]
- [ 1 ]
- [0 ---]
- [ 2 ]
- [ ]
- [ 1 ]
- [0 ---]
- [ 2 ]
- [ ]
- [ 1 ]
- [0 ---]
- [ 2 ]
- symmetrybasis(rep,2);
- symmetrybasis(rep,3);
- symmetrybasis(rep,4);
- [ 0 ]
- [ ]
- [ 1 ]
- [ --- ]
- [ 2 ]
- [ ]
- [ - 1 ]
- [------]
- [ 2 ]
- [ ]
- [ 1 ]
- [ --- ]
- [ 2 ]
- [ ]
- [ - 1 ]
- [------]
- [ 2 ]
- symmetrybasis(rep,5);
- [ 0 0 ]
- [ ]
- [ 1 - 1 ]
- [ --- ------]
- [ 2 2 ]
- [ ]
- [ 1 1 ]
- [ --- --- ]
- [ 2 2 ]
- [ ]
- [ - 1 1 ]
- [------ --- ]
- [ 2 2 ]
- [ ]
- [ - 1 - 1 ]
- [------ ------]
- [ 2 2 ]
- symmetrybasispart(rep,5);
- [ 0 ]
- [ ]
- [ 1 ]
- [ --- ]
- [ 2 ]
- [ ]
- [ 1 ]
- [ --- ]
- [ 2 ]
- [ ]
- [ - 1 ]
- [------]
- [ 2 ]
- [ ]
- [ - 1 ]
- [------]
- [ 2 ]
- allsymmetrybases(rep);
- [1 0 0 0 0 ]
- [ ]
- [ 1 1 1 - 1 ]
- [0 --- --- --- ------]
- [ 2 2 2 2 ]
- [ ]
- [ 1 - 1 1 1 ]
- [0 --- ------ --- --- ]
- [ 2 2 2 2 ]
- [ ]
- [ 1 1 - 1 1 ]
- [0 --- --- ------ --- ]
- [ 2 2 2 2 ]
- [ ]
- [ 1 - 1 - 1 - 1 ]
- [0 --- ------ ------ ------]
- [ 2 2 2 2 ]
- % Ritz matrix from Stiefel, Faessler p. 200
- m:=mat((eps,a,a,a,a),
- (a ,d,b,g,b),
- (a ,b,d,b,g),
- (a ,g,b,d,b),
- (a ,b,g,b,d));
- [eps a a a a]
- [ ]
- [ a d b g b]
- [ ]
- m := [ a b d b g]
- [ ]
- [ a g b d b]
- [ ]
- [ a b g b d]
- diagonalize(m,rep);
- [eps 2*a 0 0 0 ]
- [ ]
- [2*a 2*b + d + g 0 0 0 ]
- [ ]
- [ 0 0 - 2*b + d + g 0 0 ]
- [ ]
- [ 0 0 0 d - g 0 ]
- [ ]
- [ 0 0 0 0 d - g]
- % eigenvalues are obvious. Eigenvectors may be obtained with
- % the coordinate transformation matrix given by allsymmetrybases.
- r1:=mat((0,1,0),
- (0,0,1),
- (1,0,0));
- [0 1 0]
- [ ]
- r1 := [0 0 1]
- [ ]
- [1 0 0]
- repC3:={C3,rC3=r1};
- repc3 := {c3,rc3=
- [0 1 0]
- [ ]
- [0 0 1]
- [ ]
- [1 0 0]
- }
- mC3:=mat((a,b,c),
- (c,a,b),
- (b,c,a));
- [a b c]
- [ ]
- mc3 := [c a b]
- [ ]
- [b c a]
- diagonalize(mC3,repC3);
- [a + b + c 0 0 ]
- [ ]
- [ 2*a - b - c sqrt(3)*b - sqrt(3)*c ]
- [ 0 ------------- -----------------------]
- [ 2 2 ]
- [ ]
- [ - sqrt(3)*b + sqrt(3)*c 2*a - b - c ]
- [ 0 -------------------------- ------------- ]
- [ 2 2 ]
-
- % note difference between real and complex case
- on complex;
- diagonalize(mC3,repC3);
- mat((a + b + c,0,0),
- i*sqrt(3)*b - i*sqrt(3)*c + 2*a - b - c
- (0,-----------------------------------------,0),
- 2
- - i*sqrt(3)*b + i*sqrt(3)*c + 2*a - b - c
- (0,0,--------------------------------------------))
- 2
-
- off complex;
- end;
- (TIME: symmetry 2870 2870)
|