123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
- off echo,msg;
- \documentstyle{article}
- \begin{document}
- \begin{displaymath}
- \frac{a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}}{a^{4}-4 a
- ^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}}
- \end{displaymath}
- \begin{displaymath}
- x=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
- \end{displaymath}
- \begin{displaymath}
- \left\{
- a^{3}+3 a^{2} b+3 a b^{2}+b^{3} , 3 \left(a^{2}+2 a b+b^{2}\right) , 6 \left(a
- +b\right)
- \right\}
- \end{displaymath}
- \begin{displaymath}
- \left\{
- \left\{
- a , a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
- \right\} , a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
- \right\}
- \end{displaymath}
- \begin{verbatim}
- REDUCE Input:
- solve(a^7-13*a+5);
- Unknown: a
- \end{verbatim}
- \begin{displaymath}
- \left\{
- a={\rm root\_of} \left(a\_^{7}-13 a\_+5,a\_,tag\_1\right)
- \right\}
- \end{displaymath}
- \begin{verbatim}
- REDUCE Input:
- solve(a**(2*y)-3*a**y+2,y);
- \end{verbatim}
- \begin{displaymath}
- \left\{
- y=\left(2 {\rm arbint} _{2} i \pi +\log \,2\right)/\log \,a , y=\left(2
- {\rm arbint} _{1} i \pi \right)/\log \,a
- \right\}
- \end{displaymath}
- \begin{verbatim}
- REDUCE Input:
- off verbatim;
- \end{verbatim}
- \begin{displaymath}
- 3 \left(\frac{{\rm d}^{2}a}{{\rm d}c^{2}} a^{2}+2 \frac{{\rm d}^{2}a}{{\rm d}c
- ^{2}} a b+\frac{{\rm d}^{2}a}{{\rm d}c^{2}} b^{2}+2 \left(\frac{{\rm d}\,a}{
- {\rm d}\,c}\right)^{2} a+2 \left(\frac{{\rm d}\,a}{{\rm d}\,c}\right)^{2} b
- \right)
- \end{displaymath}
- \begin{displaymath}
- \cos ^{2}\,\alpha +\sin ^{2}\,\alpha =1
- \end{displaymath}
- \begin{displaymath}
- \sin \left(\alpha +\beta \right)=\cos \,\alpha \: \sin \,\beta \:+\cos \,
- \beta \: \sin \,\alpha \:
- \end{displaymath}
- \begin{displaymath}
- \frac{\partial \,{\bf \tilde{u}}^{e}}{\partial \,t}+c \frac{\partial ^{2}{\bf
- \tilde{u}}^{e}}{\partial x^{2}}+b \frac{\partial \,{\bf \tilde{u}}^{i}}{
- \partial \,x}={\bf f}^{e}
- \end{displaymath}
- \begin{displaymath}
- \frac{{\bf \tilde{u}}^{e}_{j+1,k}-{\bf \tilde{u}}^{e}_{jk}}{\delta \,t}+c
- \frac{{\bf \tilde{u}}^{e}_{j,k+1}-2 {\bf \tilde{u}}^{e}_{jk}+{\bf \tilde{u}}^{
- e}_{j,k-1}}{\delta ^{2}\,x}+b \frac{{\bf \tilde{u}}^{i}_{j,k+1/2}-{\bf \tilde{
- u}}^{i}_{j,k-1/2}}{\delta \,x}={\bf f}^{e}
- \end{displaymath}
- \begin{verbatim}
- REDUCE Input:
- product(k=1,2*n+1,f(2*i k+1)\(i(2*k+1)-1));
- \end{verbatim}
- \begin{displaymath}
- \prod _{k=1}^{2 n+1}\frac{{\bf f}^{2 i_{k}+1}}{i_{2 k+1}-1}
- \end{displaymath}
- \begin{verbatim}
- REDUCE Input:
- int(u(e,j,k,x)*f(e,x),x);
- \end{verbatim}
- \begin{displaymath}
- \int {\bf \tilde{u}}^{e}_{jk}\left(x\right) {\bf f}^{e}\left(x\right)\:d\,x
- \end{displaymath}
- \begin{verbatim}
- REDUCE Input:
- sum(i=0,n,sqrt u(e,i));
- \end{verbatim}
- \begin{displaymath}
- \sum _{i=0}^{n}\sqrt {{\bf \tilde{u}}^{e}_{i}}
- \end{displaymath}
- \begin{verbatim}
- REDUCE Input:
- off latex,verbatim;
- \end{verbatim}
- \end{document}
- (TIME: rlfi 140 290)
|