123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496 |
- REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
- % Tests and demonstrations for the odesolve package
- % First some tests of the testdf module
- algebraic procedure showode();
- <<write "order is ", odeorder, " and degree is ", odedegree;
- write "linearity is ", odelinearity," and highestderiv is ",
- highestderiv>>;
- showode
- depend y,x$
- ode1 := df(y,x);
- ode1 := df(y,x)
- sortoutode(ode1, y, x)$
- showode()$
- order is 1 and degree is 1
- linearity is 1 and highestderiv is df(y,x)
- sortoutode(ode1**2,y,x)$
- showode() $
- order is 1 and degree is 2
- linearity is 2 and highestderiv is df(y,x)
- sortoutode(e**ode1,y,x) $
- showode() $
- order is 1 and degree is 0
- df(y,x)
- linearity is e and highestderiv is df(y,x)
- sortoutode(df(y,x)*df(y,x,2),y,x) $
- showode() $
- order is 2 and degree is 1
- linearity is 2 and highestderiv is df(y,x,2)
- nodepend y,x $
- depend z,w $
- sortoutode(df(z,w,2)+3*z*df(z,w)+e**z,z,w) $
- showode() $
- order is 2 and degree is 1
- z
- linearity is e and highestderiv is df(z,w,2)
- nodepend z,w $
- % ******************************************
- % Next some tests for first-order differential equations
- depend y,x $
- % Just to test tracing
- on trode $
- % First-order quadrature case
- ode := df(y,x) - x**2 - e**x;
- x 2
- ode := df(y,x) - e - x
- odesolve(ode, y, x);
- This first-order ODE can be solved by quadrature
- x 3
- 3*arbconst(1) + 3*e + x
- {y=---------------------------}
- 3
- % A first-order linear equation, with an initial condition
- ode:=df(y,x) + y * sin x/cos x - 1/cos x;
- cos(x)*df(y,x) + sin(x)*y - 1
- ode := -------------------------------
- cos(x)
- ans:=odesolve(ode,y,x);
- This is a first-order linear ODE solved by the integrating factor method
- ans := {y=arbconst(2)*cos(x) + sin(x)}
- % Note that arbconst is declared as an operator
- % The initial condition is y = 1 at x = 0 so we do...
- arbconst(!!arbconst)
- := sub(y=1,x=0,rhs first solve(ans,arbconst(!!arbconst)));
- arbconst(2) := 1
- ans;
- {y=cos(x) + sin(x)}
- clear arbconst(!!arbconst) $
- % A simple separable case
- ans := odesolve(df(y,x) - y**2,y,x);
- This is a first-order separable ODE
- arbconst(3)*y - x*y - 1
- ans := {-------------------------=0}
- y
- % We can improve this by
- solve(ans,y);
- 1
- {y=-----------------}
- arbconst(3) - x
- nodepend y,x $
- % A separable case, in different variables, with an initial condition
- depend z,w $
- ode:= (1-z**2)*w*df(z,w)+(1+w**2)*z;
- 2 2
- ode := - df(z,w)*w*z + df(z,w)*w + w *z + z
- % Assign the answer so we can input the condition (z = 2 at w = 1/2)
- ans:=odesolve(ode,z,w);
- This is a first-order separable ODE
- 2 2
- 2*arbconst(4) - 2*log(w) - 2*log(z) - w + z
- ans := {-----------------------------------------------=0}
- 2
- % To tidy up the answer we will get for the constant we use
- for all x let log(x)+log(1/x)=0 $
- arbconst(!!arbconst) := sub(z=2,w=1/2,
- rhs first solve(ans,arbconst(!!arbconst)));
- - 15
- arbconst(4) := -------
- 8
- ans;
- 2 2
- - 8*log(w) - 8*log(z) - 4*w + 4*z - 15
- {-------------------------------------------=0}
- 8
- clear arbconst(!!arbconst) $
- nodepend z,w $
- % Now a homogeneous one
- depend y,x $
- ode:=df(y,x) - (x-y)/(x+y);
- df(y,x)*x + df(y,x)*y - x + y
- ode := -------------------------------
- x + y
- % To make this look decent...
- for all x,w let e**((log x)/w)=x**(1/w),
- (sqrt w)*(sqrt x)=sqrt(w*x) $
- ans := odesolve(ode,y,x);
- This is a first-order ODE of algebraically homogeneous type
- solved by change of variables y = vx method
- 2 2
- ans := {arbconst(5) + sqrt( - x + 2*x*y + y )=0}
- % Reducible to homogeneous
- % Note this is the previous example with origin shifted
- ode:=df(y,x) - (x-y-3)/(x+y-1);
- df(y,x)*x + df(y,x)*y - df(y,x) - x + y + 3
- ode := ---------------------------------------------
- x + y - 1
- ans := odesolve(ode,y,x);
- This is a first-order ODE reducible to homogeneous type
- solved by shifting the origin
- 2 2
- ans := {arbconst(6) + sqrt( - x + 2*x*y + 6*x + y - 2*y - 7)=0}
- % and the special case of reducible to homogeneous
- ode:=df(y,x)-(2*x+3*y+1)/(4*x+6*y+1);
- 4*df(y,x)*x + 6*df(y,x)*y + df(y,x) - 2*x - 3*y - 1
- ode := -----------------------------------------------------
- 4*x + 6*y + 1
- ans := odesolve(ode,y,x);
- This is a first-order ODE reducible to homogeneous type
- belonging to the special case where top and bottomare parallel lines
- solved by new variable and separation
- 49*arbconst(7) - 3*log(14*x + 21*y + 5) - 21*x + 42*y
- ans := {-------------------------------------------------------=0}
- 49
- % To tidy up the next one we need
- for all x,w let e**(log x + w) = x*e**w,
- e**(w*log x)=x**w $
- % a Bernoulli equation
- ode:=x*(1-x**2)*df(y,x) + (2*x**2 -1)*y - x**3*y**3;
- 3 3 3 2
- ode := - df(y,x)*x + df(y,x)*x - x *y + 2*x *y - y
- odesolve(ode,y,x);
- This is a first-order ODE of Bernoulli type
- 5
- 1 5*arbconst(8) + 2*x
- {----=----------------------}
- 2 4 2
- y 5*x - 5*x
- % and finally, in this set, an exact case
- ode:=(2*x**3 - 6*x*y + 6*x*y**2) + (-3*x**2 + 6*x**2*y - y**3)*df(y,x);
- 2 2 3 3 2
- ode := 6*df(y,x)*x *y - 3*df(y,x)*x - df(y,x)*y + 2*x + 6*x*y - 6*x*y
- odesolve(ode,y,x);
- This is an exact first order ODE
- 4 2 2 2 4
- {4*arbconst(9) + 2*x + 12*x *y - 12*x *y - y =0}
- % ******************************************
- % Now for higher-order linear equations with constant coefficients
- % First, examples without driving terms
- % A simple one to start
- ode:=6*df(y,x,2)+df(y,x)-2*y;
- ode := 6*df(y,x,2) + df(y,x) - 2*y
- odesolve(ode,y,x);
- This is a linear ODE with constant coefficients of order 2
- (7*x)/6
- arbconst(11) + e *arbconst(10)
- {y=--------------------------------------}
- (2*x)/3
- e
- % An example with repeated and complex roots
- ode:=df(y,x,4)+2*df(y,x,2)+y;
- ode := df(y,x,4) + 2*df(y,x,2) + y
- odesolve(ode,y,x);
- This is a linear ODE with constant coefficients of order 4
- {y= - arbconst(15)*sin(x)*x + arbconst(14)*cos(x)*x - arbconst(13)*sin(x)
- + arbconst(12)*cos(x)}
- % A simple right-hand-side using the above example;
- % It will need the substitution
- for all w let (sin w)**2 + (cos w)** 2 = 1 $
- ode:=ode-exp(x);
- x
- ode := df(y,x,4) + 2*df(y,x,2) - e + y
- odesolve(ode,y,x);
- This is a linear ODE with constant coefficients of order 4
- {y=( - 4*arbconst(19)*sin(x)*x + 4*arbconst(18)*cos(x)*x - 4*arbconst(17)*sin(x)
- x
- + 4*arbconst(16)*cos(x) + e )/4}
- ode:=df(y,x,2)+4*df(y,x)+4*y-x*exp(x);
- x
- ode := df(y,x,2) + 4*df(y,x) - e *x + 4*y
- ans:=odesolve(ode,y,x);
- This is a linear ODE with constant coefficients of order 2
- 3*x 3*x
- 27*arbconst(21)*x + 27*arbconst(20) + 3*e *x - 2*e
- ans := {y=---------------------------------------------------------}
- 2*x
- 27*e
- % At x=1 let y=0 and df(y,x)=1
- ans2 := solve({first ans, 1 = df(rhs first ans, x)},
- {arbconst(!!arbconst-1),arbconst(!!arbconst)});
- 2*x x 2 x x
- e *(9*e *x - 6*e *x + 2*e - 54*x*y - 27*x + 27*y)
- ans2 := {{arbconst(20)=-------------------------------------------------------,
- 27
- 2*x x x
- e *( - 3*e *x + e + 18*y + 9)
- arbconst(21)=----------------------------------}}
- 9
- arbconst(!!arbconst -1) := sub(x=1,y=0,rhs first first ans2);
- 2
- e *(5*e - 27)
- arbconst(20) := ---------------
- 27
- arbconst(!!arbconst) := sub(x=1,y=0,rhs second first ans2);
- 2
- e *( - 2*e + 9)
- arbconst(21) := -----------------
- 9
- ans;
- 3*x 3*x 3 3 2 2
- 3*e *x - 2*e - 6*e *x + 5*e + 27*e *x - 27*e
- {y=-----------------------------------------------------}
- 2*x
- 27*e
- clear arbconst(!!arbconst),arbconst(!!arbconst-1), ans, ans2 $
- % For simultaneous equations you can use the machine e.g. as follows
- depend z,x $
- ode1:=df(y,x,2)+5*y-4*z+36*cos(7*x);
- ode1 := 36*cos(7*x) + df(y,x,2) + 5*y - 4*z
- ode2:=y+df(z,x,2)-99*cos(7*x);
- ode2 := - 99*cos(7*x) + df(z,x,2) + y
- ode:=df(ode1,x,2)+4*ode2;
- ode := - 2160*cos(7*x) + df(y,x,4) + 5*df(y,x,2) + 4*y
- y := rhs first odesolve(ode,y,x);
- This is a linear ODE with constant coefficients of order 4
- y := arbconst(25)*sin(x) + arbconst(24)*cos(x) - arbconst(23)*sin(2*x)
- + arbconst(22)*cos(2*x) + cos(7*x)
- z := rhs first solve(ode1,z);
- z := (4*arbconst(25)*sin(x) + 4*arbconst(24)*cos(x) - arbconst(23)*sin(2*x)
- + arbconst(22)*cos(2*x) - 8*cos(7*x))/4
- clear ode1, ode2, ode, y,z $
- nodepend z,x $
- % A "homogeneous" n-th order (Euler) equation
- ode := x*df(y,x,2) + df(y, x) + y/x + (log x)**3;
- 2 3
- df(y,x,2)*x + df(y,x)*x + log(x) *x + y
- ode := ------------------------------------------
- x
- odesolve(ode, y, x);
- This equation is of the homogeneous (Euler) type
- 3
- {y=( - 2*arbconst(27)*sin(log(x)) + 2*arbconst(26)*cos(log(x)) - log(x) *x
- 2
- + 3*log(x) *x - 3*log(x)*x)/2}
- % Not yet working
- % ode :=6*df(y,x,2)+df(y,x)-2*y + tan x;
- % odesolve(ode, y,x);
- % To reset the system
- !!arbconst := 0 $
- clear ode $
- off trode$
- nodepend y,x $
- end $
- (TIME: odesolve 2950 3310)
|