GCD.LOG 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474
  1. REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
  2. COMMENT Greatest Common Divisor Test Suite;
  3. % The following examples were introduced in Moses, J. and Yun, D.Y.Y.,
  4. % "The EZ GCD Algorithm", Proc. ACM 73 (1973) 159-166, and considered
  5. % further in Hearn, A.C., "Non-modular Computation of Polynomial GCD's
  6. % Using Trial Division", Proc. EUROSAM 79, 227-239, 72, published as
  7. % Lecture Notes on Comp. Science, # 72, Springer-Verlag, Berlin, 1979.
  8. on gcd;
  9. % The following is the best setting for this file.
  10. on ezgcd;
  11. % In systems that have the heugcd code, the following is also a
  12. % possibility, although not all examples complete in a reasonable time.
  13. % load heugcd; on heugcd;
  14. % The final alternative is to use neither ezgcd nor heugcd. In that case,
  15. % most examples take excessive amounts of computer time.
  16. share n;
  17. operator xx;
  18. % Case 1.
  19. for n := 2:5
  20. do write gcd(((for i:=1:n sum xx(i))-1)*((for i:=1:n sum xx(i)) + 2),
  21. ((for i:=1:n sum xx(i))+1)
  22. *(-3xx(2)*xx(1)**2+xx(2)**2-1)**2);
  23. 1
  24. 1
  25. 1
  26. 1
  27. % Case 2.
  28. let d = (for i:=1:n sum xx(i)**n) + 1;
  29. for n := 2:7 do write gcd(d*((for i:=1:n sum xx(i)**n) - 2),
  30. d*((for i:=1:n sum xx(i)**n) + 2));
  31. 2 2
  32. xx(2) + xx(1) + 1
  33. 3 3 3
  34. xx(3) + xx(2) + xx(1) + 1
  35. 4 4 4 4
  36. xx(4) + xx(3) + xx(2) + xx(1) + 1
  37. 5 5 5 5 5
  38. xx(5) + xx(4) + xx(3) + xx(2) + xx(1) + 1
  39. 6 6 6 6 6 6
  40. xx(6) + xx(5) + xx(4) + xx(3) + xx(2) + xx(1) + 1
  41. 7 7 7 7 7 7 7
  42. xx(7) + xx(6) + xx(5) + xx(4) + xx(3) + xx(2) + xx(1) + 1
  43. for n := 2:7 do write gcd(d*((for i:=1:n sum xx(i)**n) - 2),
  44. d*((for i:=1:n sum xx(i)**(n-1)) + 2));
  45. 2 2
  46. xx(2) + xx(1) + 1
  47. 3 3 3
  48. xx(3) + xx(2) + xx(1) + 1
  49. 4 4 4 4
  50. xx(4) + xx(3) + xx(2) + xx(1) + 1
  51. 5 5 5 5 5
  52. xx(5) + xx(4) + xx(3) + xx(2) + xx(1) + 1
  53. 6 6 6 6 6 6
  54. xx(6) + xx(5) + xx(4) + xx(3) + xx(2) + xx(1) + 1
  55. 7 7 7 7 7 7 7
  56. xx(7) + xx(6) + xx(5) + xx(4) + xx(3) + xx(2) + xx(1) + 1
  57. % Case 3.
  58. let d = xx(2)**2*xx(1)**2 + (for i := 3:n sum xx(i)**2) + 1;
  59. for n := 2:5
  60. do write gcd(d*(xx(2)*xx(1) + (for i:=3:n sum xx(i)) + 2)**2,
  61. d*(xx(1)**2-xx(2)**2 + (for i:=3:n sum xx(i)**2) - 1));
  62. 2 2
  63. xx(2) *xx(1) + 1
  64. 2 2 2
  65. xx(3) + xx(2) *xx(1) + 1
  66. 2 2 2 2
  67. xx(4) + xx(3) + xx(2) *xx(1) + 1
  68. 2 2 2 2 2
  69. xx(5) + xx(4) + xx(3) + xx(2) *xx(1) + 1
  70. % Case 4.
  71. let u = xx(1) - xx(2)*xx(3) + 1,
  72. v = xx(1) - xx(2) + 3xx(3);
  73. gcd(u*v**2,v*u**2);
  74. 2 2
  75. 3*xx(3) *xx(2) - xx(3)*xx(2) + xx(3)*xx(2)*xx(1) - 3*xx(3)*xx(1) - 3*xx(3)
  76. 2
  77. + xx(2)*xx(1) + xx(2) - xx(1) - xx(1)
  78. gcd(u*v**3,v*u**3);
  79. 2 2
  80. 3*xx(3) *xx(2) - xx(3)*xx(2) + xx(3)*xx(2)*xx(1) - 3*xx(3)*xx(1) - 3*xx(3)
  81. 2
  82. + xx(2)*xx(1) + xx(2) - xx(1) - xx(1)
  83. gcd(u*v**4,v*u**4);
  84. 2 2
  85. 3*xx(3) *xx(2) - xx(3)*xx(2) + xx(3)*xx(2)*xx(1) - 3*xx(3)*xx(1) - 3*xx(3)
  86. 2
  87. + xx(2)*xx(1) + xx(2) - xx(1) - xx(1)
  88. gcd(u**2*v**4,v**2*u**4);
  89. 4 2 3 3 3 2
  90. 9*xx(3) *xx(2) - 6*xx(3) *xx(2) + 6*xx(3) *xx(2) *xx(1)
  91. 3 3 2 4
  92. - 18*xx(3) *xx(2)*xx(1) - 18*xx(3) *xx(2) + xx(3) *xx(2)
  93. 2 3 2 2 2 2 2
  94. - 2*xx(3) *xx(2) *xx(1) + xx(3) *xx(2) *xx(1) + 12*xx(3) *xx(2) *xx(1)
  95. 2 2 2 2 2
  96. + 12*xx(3) *xx(2) - 12*xx(3) *xx(2)*xx(1) - 12*xx(3) *xx(2)*xx(1)
  97. 2 2 2 2 3
  98. + 9*xx(3) *xx(1) + 18*xx(3) *xx(1) + 9*xx(3) - 2*xx(3)*xx(2) *xx(1)
  99. 3 2 2 2
  100. - 2*xx(3)*xx(2) + 4*xx(3)*xx(2) *xx(1) + 4*xx(3)*xx(2) *xx(1)
  101. 3 2
  102. - 2*xx(3)*xx(2)*xx(1) - 8*xx(3)*xx(2)*xx(1) - 12*xx(3)*xx(2)*xx(1)
  103. 3 2
  104. - 6*xx(3)*xx(2) + 6*xx(3)*xx(1) + 12*xx(3)*xx(1) + 6*xx(3)*xx(1)
  105. 2 2 2 2 3 2
  106. + xx(2) *xx(1) + 2*xx(2) *xx(1) + xx(2) - 2*xx(2)*xx(1) - 4*xx(2)*xx(1)
  107. 4 3 2
  108. - 2*xx(2)*xx(1) + xx(1) + 2*xx(1) + xx(1)
  109. % Case 5.
  110. let d = (for i := 1:n product (xx(i)+1)) - 3;
  111. for n := 2:5 do write gcd(d*for i := 1:n product (xx(i) - 2),
  112. d*for i := 1:n product (xx(i) + 2));
  113. xx(2)*xx(1) + xx(2) + xx(1) - 2
  114. xx(3)*xx(2)*xx(1) + xx(3)*xx(2) + xx(3)*xx(1) + xx(3) + xx(2)*xx(1) + xx(2)
  115. + xx(1) - 2
  116. xx(4)*xx(3)*xx(2)*xx(1) + xx(4)*xx(3)*xx(2) + xx(4)*xx(3)*xx(1) + xx(4)*xx(3)
  117. + xx(4)*xx(2)*xx(1) + xx(4)*xx(2) + xx(4)*xx(1) + xx(4) + xx(3)*xx(2)*xx(1)
  118. + xx(3)*xx(2) + xx(3)*xx(1) + xx(3) + xx(2)*xx(1) + xx(2) + xx(1) - 2
  119. xx(5)*xx(4)*xx(3)*xx(2)*xx(1) + xx(5)*xx(4)*xx(3)*xx(2)
  120. + xx(5)*xx(4)*xx(3)*xx(1) + xx(5)*xx(4)*xx(3) + xx(5)*xx(4)*xx(2)*xx(1)
  121. + xx(5)*xx(4)*xx(2) + xx(5)*xx(4)*xx(1) + xx(5)*xx(4) + xx(5)*xx(3)*xx(2)*xx(1)
  122. + xx(5)*xx(3)*xx(2) + xx(5)*xx(3)*xx(1) + xx(5)*xx(3) + xx(5)*xx(2)*xx(1)
  123. + xx(5)*xx(2) + xx(5)*xx(1) + xx(5) + xx(4)*xx(3)*xx(2)*xx(1)
  124. + xx(4)*xx(3)*xx(2) + xx(4)*xx(3)*xx(1) + xx(4)*xx(3) + xx(4)*xx(2)*xx(1)
  125. + xx(4)*xx(2) + xx(4)*xx(1) + xx(4) + xx(3)*xx(2)*xx(1) + xx(3)*xx(2)
  126. + xx(3)*xx(1) + xx(3) + xx(2)*xx(1) + xx(2) + xx(1) - 2
  127. clear d,u,v;
  128. % The following examples were discussed in Char, B.W., Geddes, K.O.,
  129. % Gonnet, G.H., "GCDHEU: Heuristic Polynomial GCD Algorithm Based
  130. % on Integer GCD Computation", Proc. EUROSAM 84, 285-296, published as
  131. % Lecture Notes on Comp. Science, # 174, Springer-Verlag, Berlin, 1984.
  132. % Maple Problem 1.
  133. gcd(34*x**80-91*x**99+70*x**31-25*x**52+20*x**76-86*x**44-17*x**33
  134. -6*x**89-56*x**54-17,
  135. 91*x**49+64*x**10-21*x**52-88*x**74-38*x**76-46*x**84-16*x**95
  136. -81*x**72+96*x**25-20);
  137. 1
  138. % Maple Problem 2.
  139. g := 34*x**19-91*x+70*x**7-25*x**16+20*x**3-86;
  140. 19 16 7 3
  141. g := 34*x - 25*x + 70*x + 20*x - 91*x - 86
  142. gcd(g * (64*x**34-21*x**47-126*x**8-46*x**5-16*x**60-81),
  143. g * (72*x**60-25*x**25-19*x**23-22*x**39-83*x**52+54*x**10+81) );
  144. 19 16 7 3
  145. 34*x - 25*x + 70*x + 20*x - 91*x - 86
  146. % Maple Problem 3.
  147. gcd(3427088418+8032938293*x-9181159474*x**2-9955210536*x**3
  148. +7049846077*x**4-3120124818*x**5-2517523455*x**6+5255435973*x**7
  149. +2020369281*x**8-7604863368*x**9-8685841867*x**10+4432745169*x**11
  150. -1746773680*x**12-3351440965*x**13-580100705*x**14+8923168914*x**15
  151. -5660404998*x**16 +5441358149*x**17-1741572352*x**18
  152. +9148191435*x**19-4940173788*x**20+6420433154*x**21+980100567*x**22
  153. -2128455689*x**23+5266911072*x**24-8800333073*x**25-7425750422*x**26
  154. -3801290114*x**27-7680051202*x**28-4652194273*x**29-8472655390*x**30
  155. -1656540766*x**31+9577718075*x**32-8137446394*x**33+7232922578*x**34
  156. +9601468396*x**35-2497427781*x**36-2047603127*x**37-1893414455*x**38
  157. -2508354375*x**39-2231932228*x**40,
  158. 2503247071-8324774912*x+6797341645*x**2+5418887080*x**3
  159. -6779305784*x**4+8113537696*x**5+2229288956*x**6+2732713505*x**7
  160. +9659962054*x**8-1514449131*x**9+7981583323*x**10+3729868918*x**11
  161. -2849544385*x**12-5246360984*x**13+2570821160*x**14-5533328063*x**15
  162. -274185102*x**16+8312755945*x**17-2941669352*x**18-4320254985*x**19
  163. +9331460166*x**20-2906491973*x**21-7780292310*x**22-4971715970*x**23
  164. -6474871482*x**24-6832431522*x**25-5016229128*x**26-6422216875*x**27
  165. -471583252*x**28+3073673916*x**29+2297139923*x**30+9034797416*x**31
  166. +6247010865*x**32+5965858387*x**33-4612062748*x**34+5837579849*x**35
  167. -2820832810*x**36-7450648226*x**37+2849150856*x**38+2109912954*x**39
  168. +2914906138*x**40);
  169. 1
  170. % Maple Problem 4.
  171. g := 34271+80330*x-91812*x**2-99553*x**3+70499*x**4-31201*x**5
  172. -25175*x**6+52555*x**7+20204*x**8-76049*x**9-86859*x**10;
  173. 10 9 8 7 6 5
  174. g := - 86859*x - 76049*x + 20204*x + 52555*x - 25175*x - 31201*x
  175. 4 3 2
  176. + 70499*x - 99553*x - 91812*x + 80330*x + 34271
  177. gcd(g * (44328-17468*x-33515*x**2-5801*x**3+89232*x**4-56604*x**5
  178. +54414*x**6-17416*x**7+91482*x**8-49402*x**9+64205*x**10
  179. +9801*x**11-21285*x**12+52669*x**13-88004*x**14-74258*x**15
  180. -38013*x**16-76801*x**17-46522*x**18-84727*x**19-16565*x**20
  181. +95778*x**21-81375*x**22+72330*x**23+96015*x**24-24974*x**25
  182. -20476*x**26-18934*x**27-25084*x**28-22319*x**29+25033*x**30),
  183. g * (-83248+67974*x+54189*x**2-67793*x**3+81136*x**4+22293*x**5
  184. +27327*x**6+96600*x**7-15145*x**8+79816*x**9+37299*x**10
  185. -28496*x**11-52464*x**12+25708*x**13-55334*x**14-2742*x**15
  186. +83128*x**16-29417*x**17-43203*x**18+93315*x**19-29065*x**20
  187. -77803*x**21-49717*x**22-64749*x**23-68325*x**24-50163*x**25
  188. -64222*x**26-4716*x**27+30737*x**28+22972*x**29+90348*x**30));
  189. 10 9 8 7 6 5 4
  190. 86859*x + 76049*x - 20204*x - 52555*x + 25175*x + 31201*x - 70499*x
  191. 3 2
  192. + 99553*x + 91812*x - 80330*x - 34271
  193. % Maple Problem 5.
  194. gcd(-8472*x**4*y**10-8137*x**9*y**10-2497*x**4*y**4-2508*x**4*y**6
  195. -8324*x**9*y**8-6779*x**9*y**6+2733*x**10*y**4+7981*x**7*y**3
  196. -5246*x**6*y**2-274*x**10*y**3-4320,
  197. 15168*x**3*y-4971*x*y-2283*x*y**5+3074*x**6*y**10+6247*x**8*y**2
  198. +2849*x**6*y**7-2039*x**7-2626*x**2*y**7+9229*x**6*y**5+2404*y**5
  199. +1387*x**4*y**8+5602*x**5*y**2-6212*x**3*y**7-8561);
  200. 1
  201. % Maple Problem 6.
  202. g := -19*x**4*y**4+25*y**9+54*x*y**9+22*x**7*y**10-15*x**9*y**7-28;
  203. 9 7 7 10 4 4 9 9
  204. g := - 15*x *y + 22*x *y - 19*x *y + 54*x*y + 25*y - 28
  205. gcd(g*(91*x**2*y**9+10*x**4*y**8-88*x*y**3-76*x**2-16*x**10*y
  206. +72*x**10*y**4-20),
  207. g*(34*x**9-99*x**9*y**3-25*x**8*y**6-76*y**7-17*x**3*y**5
  208. +89*x**2*y**8-17));
  209. 9 7 7 10 4 4 9 9
  210. 15*x *y - 22*x *y + 19*x *y - 54*x*y - 25*y + 28
  211. % Maple Problem 7.
  212. gcd(6713544209*x**9+8524923038*x**3*y**3*z**7+6010184640*x*z**7
  213. +4126613160*x**3*y**4*z**9+2169797500*x**7*y**4*z**9
  214. +2529913106*x**8*y**5*z**3+7633455535*y*z**3+1159974399*x**2*z**4
  215. +9788859037*y**8*z**9+3751286109*x**3*y**4*z**3,
  216. 3884033886*x**6*z**8+7709443539*x*y**9*z**6
  217. +6366356752*x**9*y**4*z**8+6864934459*x**3*y**2*z**6
  218. +2233335968*x**4*y**9*z**3+2839872507*x**9*y**3*z
  219. +2514142015*x*y*z**2+1788891562*x**4*y**6*z**6
  220. +9517398707*x**8*y**7*z**2+7918789924*x**3*y*z**6
  221. +6054956477*x**6*y**3*z**6);
  222. 1
  223. % Maple Problem 8.
  224. g := u**3*(x**2-y)*z**2+(u-3*u**2*x)*y*z-u**4*x*y+3;
  225. 4 3 2 2 3 2 2
  226. g := - u *x*y + u *x *z - u *y*z - 3*u *x*y*z + u*y*z + 3
  227. gcd(g * ((y**2+x)*z**2+u**5*(x*y+x**2)*z-y+5),
  228. g * ((y**2-x)*z**2+u**5*(x*y-x**2)*z+y+9) );
  229. 4 3 2 2 3 2 2
  230. u *x*y - u *x *z + u *y*z + 3*u *x*y*z - u*y*z - 3
  231. % Maple Problem 9.
  232. g := 34*u**2*y**2*z-25*u**2*v*z**2-18*v*x**2*z**2-18*u**2*x**2*y*z+53
  233. +x**3;
  234. 2 2 2 2 2 2 2 2 3
  235. g := - 25*u *v*z - 18*u *x *y*z + 34*u *y *z - 18*v*x *z + x + 53
  236. gcd( g * (-85*u*v**2*y**2*z**2-25*u*v*x*y*z-84*u**2*v**2*y**2*z
  237. +27*u**2*v*x**2*y**2*z-53*u*x*y**2*z+34*x**3),
  238. g * (48*x**3-99*u*x**2*y**2*z-69*x*y*z-75*u*v*x*y*z**2
  239. -43*u**2*v+91*u**2*v**2*y**2*z) );
  240. 2 2 2 2 2 2 2 2 3
  241. 25*u *v*z + 18*u *x *y*z - 34*u *y *z + 18*v*x *z - x - 53
  242. % Maple Problem 10.
  243. gcd(-9955*v**9*x**3*y**4*z**8+2020*v*y**7*z**4
  244. -3351*v**5*x**10*y**2*z**8-1741*v**10*x**2*y**9*z**6
  245. -2128*v**8*y*z**3-7680*v**2*y**4*z**10-8137*v**9*x**10*y**4*z**4
  246. -1893*v**4*x**4*y**6+6797*v**8*x*y**9*z**6
  247. +2733*v**10*x**4*y**9*z**7-2849*v**2*x**6*y**2*z**5
  248. +8312*v**3*x**3*y**10*z**3-7780*v**2*x*y*z**2
  249. -6422*v**5*x**7*y**6*z**10+6247*v**8*x**2*y**8*z**3
  250. -7450*v**7*x**6*y**7*z**4+3625*x**4*y**2*z**7+9229*v**6*x**5*y**6
  251. -112*v**6*x**4*y**8*z**7-7867*v**5*x**8*y**5*z**2
  252. -6212*v**3*x**7*z**5+8699*v**8*x**2*y**2*z**5
  253. +4442*v**10*x**5*y**4*z+1965*v**10*y**3*z**3-8906*v**6*x*y**4*z**5
  254. +5552*x**10*y**4+3055*v**5*x**3*y**6*z**2+6658*v**7*x**10*z**6
  255. +3721*v**8*x**9*y**4*z**8+9511*v*x**6*y+5437*v**3*x**9*y**9*z**7
  256. -1957*v**6*x**4*y*z**3+9214*v**3*x**9*y**3*z**7
  257. +7273*v**2*x**8*y**4*z**10+1701*x**10*y**7*z**2
  258. +4944*v**5*x**5*y**8*z**8-1935*v**3*x**6*y**10*z**7
  259. +4029*x**6*y**10*z**3+9462*v**6*x**5*y**4*z**8-3633*v**4*x*y**7*z**5
  260. -1876,
  261. -5830*v**7*x**8*y*z**2-1217*v**8*x*y**2*z**5
  262. -1510*v**9*x**3*y**10*z**10+7036*v**6*x**8*y**3*z**3
  263. +1022*v**9*y**3*z**8+3791*v**8*x**3*y**7+6906*v**6*x*y*z**10
  264. +117*v**7*x**2*y**4*z**4+6654*v**6*x**5*y**2*z**3
  265. -7302*v**10*x**8*y**3-5343*v**8*x**5*y**9*z
  266. -2244*v**9*x**3*y**8*z**9-3719*v**5*x**10*y**6*z**8
  267. +2629*x**3*y**2*z**10+8517*x**9*y**6*z**7-9551*v**5*x**6*y**6*z**2
  268. -7750*x**10*y**7*z**4-5035*v**5*x**2*y**5*z-5967*v**9*x**5*y**9*z**5
  269. -8517*v**3*x**2*y**7*z**6-2668*v**10*y**9*z**4+1630*v**5*x**5*y*z**8
  270. +9099*v**7*x**9*y**4*z**3-5358*v**9*x**5*y**6*z**2
  271. +5766*v**5*y**3*z**4-3624*v*x**4*y**10*z**10
  272. +8839*v**6*x**9*y**10*z**4+3378*x**7*y**2*z**5+7582*v**7*x*y**8*z**7
  273. -85*v*x**2*y**9*z**6-9495*v**9*x**10*y**6*z**3+1983*v**9*x**3*y
  274. -4613*v**10*x**4*y**7*z**6+5529*v**10*x*y**6
  275. +5030*v**4*x**5*y**4*z**9-9202*x**6*y**3*z**9
  276. -4988*v**2*x**2*y**10*z**4-8572*v**9*x**7*y**10*z**10
  277. +4080*v**4*x**8*z**8-382*v**9*x**9*y**2*z**2-7326);
  278. 1
  279. end;
  280. (TIME: gcd 2550 2760)