12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409 |
- REDUCE 3.6, 15-Jul-95, patched to 6 Mar 96 ...
- load_package crackapp;
- % Needed for these tests.
- % Initial load up list
- off echo$
- ..........................................................................
- An example of the determination of point symmetries for ODEs
- --------------------------------------------------------------------------
- This is LIEPDE - a program for calculating infinitesimal symmetries
- of single ODEs/PDEs and ODE/PDE - systems
- The ODE/PDE (-system) under investigation is :
- 4 3 2
- 0 = df(y,x,2)*x - df(y,x)*x - 2*df(y,x)*x*y + 4*y
- for the function(s) :
- y(x)
- time to formulate conditions: 190 ms GC time : 0 ms
- This is CRACK - a solver for overdetermined partial differential equations
- Version 1995-03-20
- **************************************************************************
- equations: expr. with 21 terms
- functions: eta_y(y,x) xi_x(y,x)
- separation w.r.t. y|1
- new function: c1(x)
- new function: c2(x)
- integrated equation :
- 0=c1 + c2*y + xi_x
- separation yields 4 equations
- substitution :
- xi_x= - c1 - c2*y
- eta_y(y,x)
- xi_x= - c1 - c2*y
- new function: c3(x)
- new function: c4(x)
- new function: c5(x)
- new function: c6(x)
- integrated equation :
- 3 2 2 2 3 3
- 0=3*df(c2,x)*x *y + 3*c2*x *y + 2*c2*y + 3*c5 + 3*c6*y + 3*eta_y*x
- substitution :
- 3 2 2 2 3
- - 3*df(c2,x)*x *y - 3*c2*x *y - 2*c2*y - 3*c5 - 3*c6*y
- eta_y=------------------------------------------------------------
- 3
- 3*x
- 3 2 2 2 3
- - 3*df(c2,x)*x *y - 3*c2*x *y - 2*c2*y - 3*c5 - 3*c6*y
- eta_y=------------------------------------------------------------
- 3
- 3*x
- xi_x= - c1 - c2*y
- separation w.r.t. y
- separation yields 4 equations
- substitution :
- c2=0
- - c5 - c6*y
- eta_y=--------------
- 3
- x
- xi_x= - c1
- substitution :
- 3 2
- c6= - df(c1,x)*x + 3*c1*x
- 3 2
- df(c1,x)*x *y - 3*c1*x *y - c5
- eta_y=--------------------------------
- 3
- x
- xi_x= - c1
- substitution :
- 6 5 4
- - 3*df(c1,x,2)*x + 5*df(c1,x)*x - 5*c1*x
- c5=----------------------------------------------
- 2
- 4 3 2
- 3*df(c1,x,2)*x - 5*df(c1,x)*x + 2*df(c1,x)*x*y + 5*c1*x - 6*c1*y
- eta_y=---------------------------------------------------------------------
- 2*x
- xi_x= - c1
- separation w.r.t. y
- new constant: c7
- new constant: c8
- integrated equation :
- 0=log(x)*c8*x - c1 + c7*x
- new constant: c9
- new constant: c10
- new constant: c11
- integrated equation :
- 3
- 0=log(x)*c10*x - c1 + c11*x + c9*x
- new constant: c12
- new constant: c13
- new constant: c14
- new constant: c15
- integrated equation :
- 2/3 2 2 2
- 0=x *c14*x + log(x)*c13*x - c1*x + c12*x + c15
- separation yields 3 equations
- substitution :
- c1=log(x)*c8*x + c7*x
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- xi_x= - log(x)*c8*x - c7*x
- separation w.r.t. x
- linear independent expressions :
- x*log(x)
- 3
- x
- x
- separation yields 3 equations
- substitution :
- c11=0
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- xi_x= - log(x)*c8*x - c7*x
- separation w.r.t. x
- linear independent expressions :
- 2 2/3
- x *x
- 2
- x *log(x)
- 2
- x
- 1
- separation yields 4 equations
- substitution :
- c14=0
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- xi_x= - log(x)*c8*x - c7*x
- substitution :
- c15=0
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- xi_x= - log(x)*c8*x - c7*x
- substitution :
- c12=c7
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- xi_x= - log(x)*c8*x - c7*x
- substitution :
- c13=c8
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- xi_x= - log(x)*c8*x - c7*x
- substitution :
- c10=c8
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- xi_x= - log(x)*c8*x - c7*x
- substitution :
- c9=c7
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- xi_x= - log(x)*c8*x - c7*x
- End of this CRACK run
- The solution :
- xi_x= - log(x)*c8*x - c7*x
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- Free functions or constants : c7 c8
- **************************************************************************
- CRACK needed : 2080 ms GC time : 250 ms
- Remaining free functions after the last CRACK-run:
- c7 c8
- The symmetries are:
- xi_x= - log(x)*c8*x - c7*x
- 2
- eta_y= - 2*log(x)*c8*y - 2*c7*y - c8*x + c8*y
- with c7 c8 which are free.
- ..........................................................................
- An example of the determination of point symmetries for PDEs
- --------------------------------------------------------------------------
- This is LIEPDE - a program for calculating infinitesimal symmetries
- of single ODEs/PDEs and ODE/PDE - systems
- The ODE/PDE (-system) under investigation is :
- 0 = df(u,x,2) - df(u,y)
- for the function(s) :
- u(y,x)
- time to formulate conditions: 170 ms GC time : 0 ms
- This is CRACK - a solver for overdetermined partial differential equations
- Version 1995-03-20
- **************************************************************************
- equations:
- 0= - 2*df(xi_y,u)*u|1 - 2*df(xi_y,x)
- functions: eta_u(u,y,x) xi_y(u,y,x) xi_x(u,y,x)
- separation w.r.t. u|1
- new function: c18(u,y)
- new function: c19(u,y)
- integrated equation :
- 0=c19 + xi_y
- new function: c20(y,x)
- new function: c21(y,x)
- integrated equation :
- 0=c21 + xi_y
- separation yields 2 equations
- substitution :
- xi_y= - c21
- eta_u(u,y,x)
- xi_y= - c21
- xi_x(u,y,x)
- generalized separation
- new function: c22(y)
- new function: c23(y)
- separation yields 3 equations
- substitution :
- c21=c22
- eta_u(u,y,x)
- xi_y= - c22
- xi_x(u,y,x)
- substitution :
- c19=c22
- eta_u(u,y,x)
- xi_y= - c22
- xi_x(u,y,x)
- substitution :
- c22= - c23
- eta_u(u,y,x)
- xi_y=c23
- xi_x(u,y,x)
- End of this CRACK run
- The solution :
- xi_y=c23
- Free functions or constants : xi_x(u,y,x) eta_u(u,y,x) c23(y)
- **************************************************************************
- CRACK needed : 120 ms GC time : 0 ms
- Remaining free functions after the last CRACK-run:
- xi_x(u,y,x) eta_u(u,y,x) c23(y)
- time to formulate conditions: 100 ms GC time : 0 ms
- This is CRACK - a solver for overdetermined partial differential equations
- Version 1995-03-20
- **************************************************************************
- equations: expr. with 12 terms
- functions: xi_x(u,y,x) eta_u(u,y,x) c23(y)
- separation w.r.t. u|1
- separation w.r.t. u|2
- separation w.r.t. u|2
- new function: c24(y,x)
- new function: c25(y,x)
- new function: c26(y,x)
- new function: c27(y,x)
- integrated equation :
- 0=c26 + c27*u + xi_x
- new function: c28(y,x)
- integrated equation :
- 0=df(eta_u,u) - 2*df(xi_x,x) + c28
- new function: c29(y,x)
- new function: c30(y,x)
- integrated equation :
- 0=c30 + xi_x
- new function: c31(u,y)
- new function: c32(u,y)
- integrated equation :
- 0=df(c23,y)*x + c32 - 2*xi_x
- separation yields 6 equations
- substitution :
- xi_x= - c30
- xi_x= - c30
- eta_u(u,y,x) c23(y)
- generalized separation
- new function: c33(y)
- new function: c34(y)
- separation yields 3 equations
- substitution :
- c32= - c34
- xi_x= - c30
- eta_u(u,y,x) c23(y)
- substitution :
- - df(c23,y)*x + c34
- c30=----------------------
- 2
- df(c23,y)*x - c34
- xi_x=-------------------
- 2
- eta_u(u,y,x) c23(y)
- substitution :
- c33= - c34
- df(c23,y)*x - c34
- xi_x=-------------------
- 2
- eta_u(u,y,x) c23(y)
- new function: c35(x,y)
- new function: c36(x,y)
- integrated equation :
- 0=df(c23,y)*u - c28*u + c36 - eta_u
- substitution :
- eta_u=df(c23,y)*u - c28*u + c36
- df(c23,y)*x - c34
- xi_x=-------------------
- 2
- eta_u=df(c23,y)*u - c28*u + c36
- c23(y)
- new function: c37(y)
- new function: c38(y)
- integrated equation :
- 2
- 0=df(c23,y,2)*x - 2*df(c34,y)*x - 8*c28 + 2*c38
- substitution :
- 2
- df(c23,y,2)*x - 2*df(c34,y)*x + 2*c38
- c28=----------------------------------------
- 8
- df(c23,y)*x - c34
- xi_x=-------------------
- 2
- 2
- - df(c23,y,2)*u*x + 8*df(c23,y)*u + 2*df(c34,y)*u*x + 8*c36 - 2*c38*u
- eta_u=-------------------------------------------------------------------------
- 8
- c23(y)
- separation w.r.t. u
- separation yields 2 equations
- substitution :
- c27=0
- df(c23,y)*x - c34
- xi_x=-------------------
- 2
- 2
- - df(c23,y,2)*u*x + 8*df(c23,y)*u + 2*df(c34,y)*u*x + 8*c36 - 2*c38*u
- eta_u=-------------------------------------------------------------------------
- 8
- c23(y)
- separation w.r.t. u
- separation w.r.t. x
- new constant: c39
- new constant: c40
- new constant: c41
- new constant: c42
- new constant: c43
- new constant: c44
- integrated equation :
- 2
- 0=2*c23 + 2*c42 + c43*y + 2*c44*y
- new constant: c45
- new constant: c46
- new constant: c47
- new constant: c48
- integrated equation :
- 0=c34 + c47 + c48*y
- new constant: c49
- integrated equation :
- 0=5*df(c23,y) - c38 + c49
- separation yields 4 equations
- substitution :
- c34= - c47 - c48*y
- df(c23,y)*x + c47 + c48*y
- xi_x=---------------------------
- 2
- 2
- - df(c23,y,2)*u*x + 8*df(c23,y)*u + 8*c36 - 2*c38*u - 2*c48*u*x
- eta_u=-------------------------------------------------------------------
- 8
- c23(y)
- substitution :
- - df(c23,y)*x - c47 - c48*y
- c26=------------------------------
- 2
- df(c23,y)*x + c47 + c48*y
- xi_x=---------------------------
- 2
- 2
- - df(c23,y,2)*u*x + 8*df(c23,y)*u + 8*c36 - 2*c38*u - 2*c48*u*x
- eta_u=-------------------------------------------------------------------
- 8
- c23(y)
- substitution :
- 2
- - 2*c42 - c43*y - 2*c44*y
- c23=-----------------------------
- 2
- - c43*x*y - c44*x + c47 + c48*y
- xi_x=----------------------------------
- 2
- 2
- 8*c36 - 2*c38*u + c43*u*x - 8*c43*u*y - 8*c44*u - 2*c48*u*x
- eta_u=--------------------------------------------------------------
- 8
- 2
- - 2*c42 - c43*y - 2*c44*y
- c23=-----------------------------
- 2
- substitution :
- c38= - 5*c43*y - 5*c44 + c49
- - c43*x*y - c44*x + c47 + c48*y
- xi_x=----------------------------------
- 2
- 2
- 8*c36 + c43*u*x + 2*c43*u*y + 2*c44*u - 2*c48*u*x - 2*c49*u
- eta_u=--------------------------------------------------------------
- 8
- 2
- - 2*c42 - c43*y - 2*c44*y
- c23=-----------------------------
- 2
- decoupling:
- c36
- new equations:
- End of this CRACK run
- The solution :
- 2
- - 2*c42 - c43*y - 2*c44*y
- c23=-----------------------------
- 2
- 2
- 8*c36 + c43*u*x + 2*c43*u*y + 2*c44*u - 2*c48*u*x - 2*c49*u
- eta_u=--------------------------------------------------------------
- 8
- - c43*x*y - c44*x + c47 + c48*y
- xi_x=----------------------------------
- 2
- Remaining conditions :
- 0=df(c36,x,2) - df(c36,y)
- for the functions : c42 c47 c48 c43 c44
- c49 c36(x,y)
- **************************************************************************
- CRACK needed : 980 ms GC time : 110 ms
- Remaining free functions after the last CRACK-run:
- c42 c47 c48 c43 c44
- c49 c36(x,y)
- Free constants and/or functions have been rescaled.
- The symmetries are:
- xi_x= - 4*c43*x*y - 2*c44*x + c47 + 2*c48*y
- 2
- xi_y= - c42 - 4*c43*y - 4*c44*y
- 2
- eta_u=c36 + c43*u*x + 2*c43*u*y + c44*u - c48*u*x - c49*u
- with c42 c47 c48 c43 c44
- c49 c36(x,y)
- which still have to satisfy:
- 0=df(c36,x,2) - df(c36,y)
- ..........................................................................
- An example of the determination of first integrals of ODEs
- Determination of a first integral for:
- 2 2 2
- df(y,x) *x - 2*df(y,x) - y
- df(y,x,2)=------------------------------
- x
- new function: h_0(y,x)
- new function: h_1(y,x)
- new function: h_2(y,x)
- 2
- of the type: df(y,x) *h_2 + df(y,x)*h_1 + h_0
- This is CRACK - a solver for overdetermined partial differential equations
- Version 1995-03-20
- **************************************************************************
- equations: expr. with 13 terms
- functions: h_2(y,x) h_1(y,x) h_0(y,x)
- separation w.r.t. d_y(1)
- new function: c50(x)
- integrated equation :
- 2*x*y
- 0=e *h_2 - c50
- separation yields 4 equations
- substitution :
- c50
- h_2=--------
- 2*x*y
- e
- c50
- h_2=--------
- 2*x*y
- e
- h_1(y,x) h_0(y,x)
- substitution :
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- c50
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- new function: c51(x)
- integrated equation :
- 2 2*x*y 3 x*y 3 2 3 2
- 0=df(c50,x)*x*y - e *df(h_0,x)*x + e *c51*x *y - 2*c50*x*y - 6*c50*y
- decoupling:
- h_0
- new equations: expr. with 10 terms
- with leading derivative (df h_0 x 3) replaces a de with (df h_0 y)
- expr. with 20 terms
- with leading derivative (df h_0 x 2) replaces a de with (df h_0 x 3)
- expr. with 17 terms
- with leading derivative (df h_0 x) replaces a de with (df h_0 x 2)
- equations: expr. with 13 terms
- 2*x*y 2 2*x*y 2*x*y 2 4
- 0=e *df(h_0,x,2)*x - e *df(h_0,x)*x + e *df(h_0,y)*x*y - 2*c50*y
- 2 2*x*y 3 x*y 3 2 3 2
- 0=df(c50,x)*x*y - e *df(h_0,x)*x + e *c51*x *y - 2*c50*x*y - 6*c50*y
- functions:
- c50
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x) c51(x) c50(x)
- separation w.r.t. y
- linear independent expressions :
- 1
- y
- 2
- y
- x*y
- e
- x*y
- y*e
- new constant: c52
- integrated equation :
- 0=c51 - c52*x
- new constant: c53
- new constant: c54
- integrated equation :
- 0=c51 + c53 + c54*x
- new constant: c55
- integrated equation :
- 4
- 0=c50 - c55*x
- new constant: c56
- new constant: c57
- integrated equation :
- 4 4
- 0=log(x)*c57*x - c50 + c56*x
- new constant: c58
- new constant: c59
- new constant: c60
- integrated equation :
- 6 4 3
- 0=c50 - c58*x - c59*x - c60*x
- separation yields 5 equations
- substitution :
- c51=c52*x
- c50
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- separation w.r.t. x
- separation yields 2 equations
- substitution :
- c53=0
- c50
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- substitution :
- 4
- c50=c55*x
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- separation w.r.t. x
- linear independent expressions :
- 4
- x *log(x)
- 4
- x
- separation yields 2 equations
- substitution :
- c57=0
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- new function: c61(y)
- substitution :
- c56=c55
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- substitution :
- c54= - c52
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- separation w.r.t. x
- separation yields 3 equations
- substitution :
- c60=0
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- substitution :
- c58=0
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- substitution :
- c59=c55
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- df(h_0,x)*x
- h_1=-------------
- 2
- y
- h_0(y,x)
- decoupling:
- h_0
- new equations:
- new function: c62(y)
- new function: c63(y)
- new function: c64(y)
- new function: c65(y)
- integrated equation : expr. with 10 terms
- substitution :
- 2*sqrt(2)*x*y + 2*x*y sqrt(2)*x*y + 2*x*y
- h_0=(e *sqrt(2)*c62 - 2*e *c65*y
- sqrt(2)*x*y + x*y 2 sqrt(2)*x*y + x*y
- - 2*e *c52*x*y - 2*e *c52*y
- sqrt(2)*x*y 2 3 sqrt(2)*x*y 2
- + 2*e *c55*x *y + 4*e *c55*x*y
- sqrt(2)*x*y 2*x*y sqrt(2)*x*y + 2*x*y
- + 2*e *c55*y - e *sqrt(2)*c63)/(2*e *y)
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- 2*sqrt(2)*x*y + 2*x*y sqrt(2)*x*y + x*y 2 2
- h_1=(e *c62*x + e *c52*x *y
- sqrt(2)*x*y 3 3 sqrt(2)*x*y 2 2 2*x*y
- - 2*e *c55*x *y - 2*e *c55*x *y + e *c63*x)/(
- sqrt(2)*x*y + 2*x*y 2
- e *y )
- h_0= expr. with 9 terms
- equations:
- 2*sqrt(2)*x*y + 2*x*y 2*x*y
- e *c62 + e *c63
- 0=-----------------------------------------
- sqrt(2)*x*y
- e
- expr. with 12 terms
- functions:
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- 2*sqrt(2)*x*y + 2*x*y sqrt(2)*x*y + x*y 2 2
- h_1=(e *c62*x + e *c52*x *y
- sqrt(2)*x*y 3 3 sqrt(2)*x*y 2 2 2*x*y
- - 2*e *c55*x *y - 2*e *c55*x *y + e *c63*x)/(
- sqrt(2)*x*y + 2*x*y 2
- e *y )
- h_0= expr. with 9 terms
- c62(y) c63(y) c65(y)
- separation w.r.t. x
- linear independent expressions :
- 2*x*y + 2*sqrt(2)*x*y
- e
- 2*x*y
- e
- separation yields 2 equations
- substitution :
- c62=0
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- sqrt(2)*x*y + x*y 2 2 sqrt(2)*x*y 3 3
- h_1=(e *c52*x *y - 2*e *c55*x *y
- sqrt(2)*x*y 2 2 2*x*y sqrt(2)*x*y + 2*x*y 2
- - 2*e *c55*x *y + e *c63*x)/(e *y )
- sqrt(2)*x*y + 2*x*y sqrt(2)*x*y + x*y 2
- h_0=( - 2*e *c65*y - 2*e *c52*x*y
- sqrt(2)*x*y + x*y sqrt(2)*x*y 2 3
- - 2*e *c52*y + 2*e *c55*x *y
- sqrt(2)*x*y 2 sqrt(2)*x*y 2*x*y
- + 4*e *c55*x*y + 2*e *c55*y - e *sqrt(2)*c63)/(2
- sqrt(2)*x*y + 2*x*y
- *e *y)
- substitution :
- c63=0
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- x*y 2 3 2
- e *c52*x - 2*c55*x *y - 2*c55*x
- h_1=-------------------------------------
- 2*x*y
- e
- 2*x*y x*y x*y 2 2
- - e *c65 - e *c52*x*y - e *c52 + c55*x *y + 2*c55*x*y + c55
- h_0=-----------------------------------------------------------------------
- 2*x*y
- e
- new constant: c66
- integrated equation :
- 0=c65 + c66
- substitution :
- c65= - c66
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- x*y 2 3 2
- e *c52*x - 2*c55*x *y - 2*c55*x
- h_1=-------------------------------------
- 2*x*y
- e
- 2*x*y x*y x*y 2 2
- e *c66 - e *c52*x*y - e *c52 + c55*x *y + 2*c55*x*y + c55
- h_0=--------------------------------------------------------------------
- 2*x*y
- e
- End of this CRACK run
- The solution :
- 2*x*y x*y x*y 2 2
- e *c66 - e *c52*x*y - e *c52 + c55*x *y + 2*c55*x*y + c55
- h_0=--------------------------------------------------------------------
- 2*x*y
- e
- x*y 2 3 2
- e *c52*x - 2*c55*x *y - 2*c55*x
- h_1=-------------------------------------
- 2*x*y
- e
- 4
- c55*x
- h_2=--------
- 2*x*y
- e
- Free functions or constants : c52 c55 c66
- **************************************************************************
- CRACK needed : 8530 ms GC time : 570 ms
- 2 4 x*y 2
- A first integral is: (df(y,x) *c55*x + e *df(y,x)*c52*x
- 3 2 x*y x*y
- - 2*df(y,x)*c55*x *y - 2*df(y,x)*c55*x - e *c52*x*y - e *c52
- 2 2 2*x*y
- + c55*x *y + 2*c55*x*y + c55)/e
- and an integrating factor:
- 2 2 x*y
- x *(2*df(y,x)*c55*x + e *c52 - 2*c55*x*y - 2*c55)
- ------------------------------------------------------
- 2*x*y
- e
- free constants: c52 c55
- ..........................................................................
- An example of the determination of a Lagrangian for an ODE
- Determination of a Lagrangian L for:
- 2
- df(y,x,2)=x + 6*y
- 2
- The ansatz: L = df(y,x) *u_ + v_
- This is CRACK - a solver for overdetermined partial differential equations
- Version 1995-03-20
- **************************************************************************
- equations:
- 2 2
- 0= - d_y(1) *df(u_,y) - 2*d_y(1)*df(u_,x) + df(v_,y) - 2*u_*x - 12*u_*y
- functions: u_(y,x) v_(y,x)
- separation w.r.t. d_y(1)
- new function: c67(y)
- new function: c68(y)
- integrated equation :
- 0=c68 + u_
- new function: c69(x)
- new function: c70(x)
- integrated equation :
- 0=c70 + u_
- separation yields 3 equations
- substitution :
- u_= - c70
- u_= - c70
- v_(y,x)
- generalized separation
- new constant: c71
- new constant: c72
- separation yields 3 equations
- substitution :
- c68= - c71
- u_= - c70
- v_(y,x)
- substitution :
- c70= - c71
- u_=c71
- v_(y,x)
- substitution :
- c71= - c72
- u_= - c72
- v_(y,x)
- new function: c73(x)
- new function: c74(x)
- integrated equation :
- 3
- 0=2*c72*x*y + 4*c72*y + c74 + v_
- substitution :
- 3
- v_= - 2*c72*x*y - 4*c72*y - c74
- u_= - c72
- 3
- v_= - 2*c72*x*y - 4*c72*y - c74
- End of this CRACK run
- The solution :
- 3
- v_= - 2*c72*x*y - 4*c72*y - c74
- u_= - c72
- Free functions or constants : c74(x) c72
- **************************************************************************
- CRACK needed : 240 ms GC time : 0 ms
- 2 2
- The solution: L = - (2*(x + 2*y )*y + df(y,x) )
- ..........................................................................
- An example of the factorization of an ODE
- Differential factorization of:
- 2 2
- df(y,x) - df(y,x)*f*y - q*y
- df(y,x,2)=-------------------------------
- y
- The ansatz: df(y,x) = a#*y + b#
- This is CRACK - a solver for overdetermined partial differential equations
- Version 1995-03-20
- **************************************************************************
- equations:
- 2 2 2 2
- 0=df(a#,x)*y + df(b#,x)*y - a#*b#*y + a#*f*y - b# + b#*f*y + q*y
- functions: a#(x) b#(x)
- separation w.r.t. y
- new constant: c75
- integrated equation :
- int(f,x) int(f,x)
- 0=e *a# + int(e *q,x) - c75
- separation yields 3 equations
- substitution :
- b#=0
- a#(x)
- b#=0
- substitution :
- int(f,x)
- - int(e *q,x) + c75
- a#=-----------------------------
- int(f,x)
- e
- int(f,x)
- - int(e *q,x) + c75
- a#=-----------------------------
- int(f,x)
- e
- b#=0
- End of this CRACK run
- The solution :
- b#=0
- int(f,x)
- - int(e *q,x) + c75
- a#=-----------------------------
- int(f,x)
- e
- Free functions or constants : c75
- **************************************************************************
- CRACK needed : 530 ms GC time : 0 ms
- int(f,x)
- int(1/e ,x)*c75
- e *c76
- The solution y=--------------------------------------
- int(f,x) int(f,x)
- int(int(e *q,x)/e ,x)
- e
- is the general solution of the original ODE
- (TIME: crack 23309 24969)
|