1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180 |
- /* arith09.c Copyright (C) 1989-1996 Codemist Ltd */
- /*
- * Arithmetic functions.
- * GCD and some boolean operations
- *
- * Version 1.2 October 1992.
- */
- /* Signature: 365c3dca 07-Mar-2000 */
- #include <stdarg.h>
- #include <string.h>
- #include <ctype.h>
- #include <math.h>
- #include "machine.h"
- #include "tags.h"
- #include "cslerror.h"
- #include "externs.h"
- #include "arith.h"
- #ifdef TIMEOUT
- #include "timeout.h"
- #endif
- static Lisp_Object absb(Lisp_Object a)
- /*
- * take absolute value of a bignum
- */
- {
- int32 len = bignum_length(a) >> 2;
- if ((int32)bignum_digits(a)[len-2] < 0) return negateb(a);
- else return a;
- }
- /*
- * The next two functions help with bignum GCDs
- */
-
- static void next_gcd_step(unsigned32 a0, unsigned32 a1,
- unsigned32 b0, unsigned32 b1,
- int32 *axp, int32 *ayp, int32 *bxp, int32*byp)
- /*
- * This function takes the two leading digits (a0,a1) and (b0,b1) of
- * a pair of numbers A and B and performs an extended GCD process to
- * find values ax, bx, ay and by with a view to letting
- * A' = ax*A + ay*B
- * B' = bx*A + by*B
- * and gcd(A', B') will be the same as gcd(A, B), but A' and B' will
- * be smaller than A and B by a factor of (up to, about) 2^30. On entry
- * A must be at least as big as B and B must be nonzero. If A/B is
- * bigger than about 0x40000000 the code will return early without doing
- * much - this must be detected and handled by the caller. The case where
- * no progress has been made will be signalled because the values ax, ay,
- * bx and by will be returned as ((1, 0), (0, 1)). Note that through the
- * body of this code axy and bxy hold ax+ay and bx+by
- */
- {
- int32 ax = 1, axy = 1,
- bx = 0, bxy = 1;
- unsigned32 q;
- int n = 0;
- /*
- * I will keep A and B as double-precision values with a view to getting
- * the most progress out of this that I can. Also I round B up, so that
- * the quotient (A/B) is guaranteed to be an under-estimate for the true
- * result. Note that A was rounded down just by the process of keeping
- * only the two leading digits.
- */
- b1++;
- if ((int32)b1 < 0)
- { b0++;
- b1 = 0; /* carry if necessary */
- }
- /*
- * If b0 overflowed here then both A and B must have started off as
- * 0x7fffffff:0x7fffffff (since B was like that to overflow when incremented,
- * and A>=B). I return as if this code was invalid, and the fall-back
- * case will do one step and tidy up a bit. A jolly uncommon case!
- */
- if ((int)b0 >= 0)
- { for (;;)
- { unsigned32 c0, c1;
- /*
- * If A/B would overflow I break. This includes the special case where B
- * has reduced to zero. I compute q = (a0,a1)/(b0,b1)
- */
- if (b0 == 0)
- { unsigned32 qt;
- if (a0 >= b1) break; /* Overflow exit */
- Ddivide(a1, qt, a0, a1, b1);
- a0 = 0; /* Leave the remainder in A */
- q = qt; /* Accurate quotient here */
- }
- else
- /*
- * I expect that the quotient here will be quite small, so I compute it in
- * a way optimised for such cases. This is just a simple shift-and-subtract
- * bit of division code, but for small quotients the number of loops executed
- * will be small. This naturally leaves the remainder in A.
- */
- { unsigned32 qt = 1;
- q = 0;
- /*
- * This code uses B (it shifts it left a few bits to start with) but at the
- * end B has been put back in its original state.
- */
- while (b0 < a0) /* Shift B left until >= A */
- { b0 = b0 << 1;
- b1 = b1 << 1;
- if ((int32)b1 < 0)
- { b0++;
- b1 &= 0x7fffffff;
- }
- qt = qt << 1; /* qt marks a bit position */
- }
- for (;;) /* Shift/subtract loop to get quotient */
- { if (b0 < a0 ||
- (b0 == a0 && b1 <= a1))
- { q |= qt;
- a0 -= b0;
- a1 -= b1;
- if ((int32)a1 < 0)
- { a0--;
- a1 &= 0x7fffffff;
- }
- }
- qt = qt >> 1;
- if (qt == 0) break;
- b1 = b1 >> 1;
- if ((b0 & 1) != 0) b1 |= 0x40000000;
- b0 = b0 >> 1;
- }
- }
- /*
- * Now A hold the next remainder onwards, so flip A and B
- */
- c0 = a0; c1 = a1; a0 = b0; a1 = b1; b0 = c0; b1 = c1;
- /*
- * If either of the next re-calculations of bx, bxy overflow then I ought
- * to exit before updating ax, bx, axy and bxy. Things are arranged so that
- * all values remain positive at this stage.
- */
- { unsigned32 cx, cxy;
- Dmultiply(cx, cxy, bxy, q, axy);
- if (cx != 0) break;
- /*
- * cxy will be >= cx, so if cxy did not overflow then cx can not. Thus it
- * is safe to use regular (not double-length) multiplication here.
- */
- cx = bx*q + ax;
- axy = bxy; bxy = cxy;
- ax = bx; bx = cx;
- n++;
- }
- /*
- * I update A and B in such a way that they alternate between the
- * sequences for under- and over-estimates of the true ratio. This is done
- * so that the partial quotients I compute always tend to be underestimates.
- */
- a1 = a1 - axy;
- if ((int32)a1 < 0)
- { a1 &= 0x7fffffff;
- a0--;
- }
- b1 = b1 + bxy;
- if ((int32)b1 < 0)
- { b1 &= 0x7fffffff;
- b0++;
- }
- if (b0 > a0 ||
- (b0 == a0 && b1 >= a1)) break;
- }
- } /* This is the end of the block testing the initial quotient */
- { int32 ay = axy - ax,
- by = bxy - bx;
- /*
- * Use of this route would involve computing A*x+B*y and C*x+D*y,
- * which is 4 multiplications. Simple division would be just A-q*B at
- * one division. To account for this I pretend that I made no progress
- * at all if I would simulate less than 3 regular remainder steps. This is
- * 3 rather than 4 because (maybe) the Lehmer code bundles up more work for
- * the overhead that it spends.
- */
- if (n < 3) ax = 1, ay = 0, bx = 0, by = 1;
- else if ((n & 1) != 0)
- { ax = -ax;
- by = -by;
- }
- else
- { ay = -ay;
- bx = -bx;
- }
- /*
- * Copy results into the places where they are wanted.
- */
- *axp = ax;
- *ayp = ay;
- *bxp = bx;
- *byp = by;
- return;
- }
- }
- static int32 huge_gcd(unsigned32 *a, int32 lena, unsigned32 *b, int32 lenb)
- /*
- * A and B are vectors of unsigned integers, representing numbers with
- * radix 2^31. lena and lenb indicate how many digits are present. The
- * numbers are unsigned. This will use the vectors as workspace and
- * compute the GCD of the two integers. The result handed back will
- * really consist of two parts. The first is a flag (held in the top
- * bit) that indicates whether A and B were swopped. The remaining bits
- * hold the length (remaining) of A.
- */
- {
- unsigned32 a0, a1, a2, b0, b1;
- int flipped = 0;
- /*
- * The next two lines adjust for an oddity in my bignum representation - the
- * if the leading digit would have its 0x40000000 bit set then I stick on
- * a leading zero. This gives me a bit more in hand wrt signed values.
- */
- if (a[lena] == 0) lena--;
- if (b[lenb] == 0) lenb--;
- for (;;)
- {
- unsigned32 q;
- int32 lenr;
- /*
- * I will perform reductions until the smaller of my two bignums has been
- * reduced to a single-precision value. After that the tidying up to
- * obtain the true GCD will be fairly easy.
- * If one number is MUCH bigger than the other I will do (part of) a
- * regular remainder calculation to reduce it. If the two numbers are
- * about the same size then I will combine several big-number operations
- * into one - the clever part of this entire program.
- */
- if (lena < lenb)
- { unsigned32 *c = a;
- int32 lenc = lena;
- a = b; lena = lenb;
- b = c; lenb = lenc;
- flipped ^= 1;
- }
- if (lenb == 0) break; /* B (at least) is now single precision */
- else if (lena == lenb)
- { while (lenb >= 0 && a[lenb] == b[lenb]) lenb--;
- /*
- * Here I want to ensure that A is really at least as big as B. While
- * so doing I may happen to discover that they are actually the same value.
- * If I do that I set things so that B looks like a single precision zero
- * and exit from the loop. The result will be that A gets returned as the
- * GCD.
- */
- if (lenb < 0)
- { b[0] = 0;
- lenb = 0;
- break;
- }
- if (a[lenb] < b[lenb])
- { unsigned32 *c = a; /* NB do not swop lena, lenb here */
- a = b; /* since lenb has been used as scratch */
- b = c; /* and both numbers are lena long */
- flipped ^= 1;
- }
- /*
- * Since the shorter number was double-length (at least) it is OK to
- * grab the first two digits of each.
- */
- a0 = a[lena]; a1 = a[lena-1];
- b0 = b[lena]; b1 = b[lena-1];
- lenb = lena;
- goto lehmer;
- }
- else if (lena == lenb+1)
- { a0 = a[lena]; a1 = a[lenb];
- b0 = 0; b1 = b[lenb];
- /*
- * If one number has one more digit than the other but the quotient will
- * still be small I may be able to use the Lehmer code.
- */
- if (a0 < b1) goto lehmer;
- }
- /*
- * Here I need to do one step towards reduction by division. A is
- * at leat as long as B, and B has at least two digits.
- */
- reduce_by_division:
- a0 = a[lena]; a1 = a[lena-1];
- b0 = b[lenb]; b1 = b[lenb-1];
- if (lena > 1) a2 = a[lena-2];
- else a2 = 0;
- /*
- * Now I intend to estimate A/B by computing (a0,a1,a2)/(b0,b1). To do
- * this I will first shift the leading digits of A and B right until b0
- * vanishes, then I will just need to compute (a0,a1,a2)/b1. If this
- * would overflow, I compute (a0,a1)/b1 instead.
- */
- while (b0 != 0)
- { b1 = b1 >> 1;
- if ((b0 & 1) != 0) b1 |= 0x40000000;
- b0 = b0 >> 1;
- a2 = a2 >> 1;
- if ((a1 & 1) != 0) a2 |= 0x40000000;
- a1 = a1 >> 1;
- if ((a0 & 1) != 0) a1 |= 0x40000000;
- a0 = a0 >> 1;
- }
- lenr = lena;
- if (b1 == 0x7fffffff)
- /*
- * I make b1 = 0x7fffffff a special case because (a) then B is as well-
- * normalised as it possibly can be and so maybe my estimated quotient
- * should be quite accurate and (b) I want to ensure that the estimate
- * for q that I obtain here is an UNDER-estimate (if anything), and I
- * will achieve this by knowing that A has been rounded down a bit and by
- * rounding B up. This rounding will mean that in general each reduction
- * step here will be able to remove 29 or 30 bits from the difference
- * between the lengths of A and B. I hope that getting q more accurate
- * would not justify the extra effort. My worry is that regard is that
- * maybe a couple of bits of error on one step will over-often lead to
- * the very next q having to be just 1 or 2 in value, which would represent
- * not very much progress in the step. My main justification for taking
- * a relaxed view is that except for the very first step in the remainder
- * sequence it will be very uncommon for this code to be activated.
- */
- { if (a0 != 0) q = a0;
- else if (lena == lenb) q = 1;
- else q = a1, lenr--;
- }
- else
- { unsigned32 rtemp, qtemp;
- b1++; /* To achieve rounding down of q */
- if (a0 != 0 || a1 >= b1) Ddivide(rtemp, qtemp, a0, a1, b1);
- /*
- * The following line indicates a special case needed when this division
- * is almost done - up to almost the end I can afford to approximate a
- * true quotient (1,0,...) as (0,ffffffff,...), but eventually I must
- * grit my teeth and get things right. Since I have carefully tested and
- * ensured that A>B I KNOW that the true quotient is at least 1, so when
- * lena==lenb I can force this is if I was in danger of estimating a lower
- * value.
- */
- else if (lena == lenb) qtemp = 1;
- else { Ddivide(rtemp, qtemp, a1, a2, b1); lenr--; }
- q = qtemp;
- }
- /*
- * Now q is an approximation to the leading digit of the quotient.
- * I now want to replace a by a - q*b*r^(lenr-lenb).
- */
- { unsigned32 carry = 0, carry1 = 1;
- int32 i, j;
- for (i=0, j=lenr-lenb; i<=lenb; i++, j++)
- { unsigned32 mlow, w;
- Dmultiply(carry, mlow, b[i], q, carry);
- w = a[j] + clear_top_bit(~mlow) + carry1;
- if ((int32)w < 0)
- { w = clear_top_bit(w);
- carry1 = 1;
- }
- else carry1 = 0;
- a[j] = w;
- }
- a[j] = a[j] + (~carry) + carry1;
- }
- while (lena > 0 && a[lena]==0) lena--;
- continue;
- lehmer:
- { int32 ax, ay, bx, by, i;
- { int32 axt, ayt, bxt, byt;
- unsigned32 b00 = b0;
- /*
- * If the numbers have 3 digits available and if the leading digits are
- * small I do some (minor) normalisation by shifting up by 16 bits. This
- * should increase the number of steps that can be taken at once (slightly).
- */
- if (a0 < (int32)0x8000U && lena > 2)
- { a0 = (a0 << 16) | (a1 >> 15);
- a1 = ((a1 << 16) | (a[lena-2] >> 15)) & 0x7fffffff;
- b00 = (b00 << 16) | (b1 >> 15);
- b1 = ((b1 << 16) | (b[lena-2] >> 15)) & 0x7fffffff;
- }
- next_gcd_step(a0, a1, b00, b1,
- &axt, &ayt, &bxt, &byt);
- ax = axt; ay = ayt;
- bx = bxt; by = byt;
- if (ay == 0) goto reduce_by_division;
- }
- /*
- * Now we should be able to arrange
- * [ ax ay ] = [ >0 <= 0 ]
- * [ bx by ] [ <= 0 > 0 ]
- * and I swop the rows to ensure that this is so.
- */
- if (ax < 0 || by < 0)
- { int32 cx = ax, cy = ay;
- ax = bx; ay = by;
- bx = cx; by = cy;
- }
- ay = -ay;
- bx = -bx; /* Now all variables are positive */
- /*
- * Now I want to compute ax*a - ay*b
- * and by*b - bx*a
- * and use these values for the new a and b. Remember that at present
- * a and b are just about the same length, and provided that I use b0
- * for the leading digit of b I can treat both as having length lena
- */
- { unsigned32 carryax = 0, carryay = 0,
- carrybx = 0, carryby = 0,
- borrowa = 1, borrowb = 1,
- aix, aiy, bix, biy, aa, bb;
- for (i=0; i<lena; i++)
- { Dmultiply(carryax, aix, a[i], ax, carryax);
- Dmultiply(carryay, aiy, b[i], ay, carryay);
- Dmultiply(carrybx, bix, a[i], bx, carrybx);
- Dmultiply(carryby, biy, b[i], by, carryby);
- aa = aix + clear_top_bit(~aiy) + borrowa;
- bb = biy + clear_top_bit(~bix) + borrowb;
- borrowa = aa >> 31;
- borrowb = bb >> 31;
- a[i] = clear_top_bit(aa);
- b[i] = clear_top_bit(bb);
- }
- /*
- * I do the top digit by hand to cope with a possible virtual zero digit at
- * the head of B.
- */
- Dmultiply(carryax, aix, a[lena], ax, carryax);
- Dmultiply(carryay, aiy, b0, ay, carryay);
- Dmultiply(carrybx, bix, a[lena], bx, carrybx);
- Dmultiply(carryby, biy, b0, by, carryby);
- aa = aix + clear_top_bit(~aiy) + borrowa;
- bb = biy + clear_top_bit(~bix) + borrowb;
- borrowa = aa >> 31;
- borrowb = bb >> 31;
- aa = clear_top_bit(aa);
- bb = clear_top_bit(bb);
- a[lena] = aa;
- if (b0 != 0) b[lena] = bb;
- lenb = lena;
- if (b0 == 0) lenb--;
- /*
- * The following test is here as a provisional measure - it caught a number of
- * bugs etc while I was developing this code. My only worry is that maybe
- * the carries and borrows could (correctly) combine to leave zero
- * upper digits here without the exact equalities tested here happening.
- * I will remove this test after a decent interval.
- */
- if (carryax - carryay + borrowa != 1 ||
- carryby - carrybx + borrowb != 1)
- { err_printf("Carries %d \"%s\" %ld %ld %ld %ld %ld %ld\n",
- __LINE__, __FILE__,
- (long)carryax, (long)carryay, (long)carrybx,
- (long)carryby, (long)borrowa, (long)borrowb);
- my_exit(EXIT_FAILURE);
- }
- while (lena > 0 && a[lena] == 0) lena--;
- while (lenb > 0 && b[lenb] == 0) lenb--;
- }
- }
- continue;
- }
- if (flipped) lena |= ~0x7fffffff;
- return lena;
- }
- Lisp_Object gcd(Lisp_Object a, Lisp_Object b)
- {
- int32 p, q;
- if (is_fixnum(a))
- { if (!is_fixnum(b))
- { if (is_numbers(b) && is_bignum(b))
- { if (a == fixnum_of_int(0)) return absb(b);
- else b = rembi(b, a);
- /*
- * a is a fixnum here, so did not need to be stacked over the
- * call to rembi()
- */
- }
- else return aerror2("bad arg for gcd", a, b);
- }
- }
- else if (is_numbers(a) && is_bignum(a))
- { if (is_fixnum(b))
- { if (b == fixnum_of_int(0)) return absb(a);
- else a = rembi(a, b);
- }
- else if (is_numbers(b) && is_bignum(b))
- { Lisp_Object nil;
- /*
- * Now I have a case that maybe I hope is not too common, but which may
- * count as the interesting one - the GCD of two bignums. First I ensure
- * that the inputs have been made positive and also that I have made copies
- * of them - this latter condition is so that it will be proper for me
- * to perform remaindering operations on them in-place, thereby reducing the
- * total turn-over of memory that I incur.
- */
- push(b);
- if (bignum_minusp(a)) a = negateb(a);
- else a = copyb(a);
- pop(b);
- errexit();
- push(a);
- if (bignum_minusp(b)) b = negateb(b);
- else b = copyb(b);
- pop(a);
- errexit();
- /*
- * Note that negating a NEGATIVE bignum may sometimes make it grow by one
- * word, but can never cause it to shrink - and in particular never shrink to
- * a smallnum. Of course negating a positive bignum can (in just one case!)
- * give a fixnum - but that can not occur here.
- */
- {
- int32 lena, lenb, new_lena;
- unsigned32 b0;
- /*
- * I apply two ideas here. The first is to perform all my arithmetic
- * in-place, since I have ensured that the numbers I am working with are
- * fresh copies. The second is to defer true bignum operations for as
- * long as I can by starting a remainder sequence using just the leading
- * digits of the inputs.
- */
- lena = (bignum_length(a) >> 2) - 2;
- lenb = (bignum_length(b) >> 2) - 2;
- new_lena = huge_gcd(&bignum_digits(a)[0], lena,
- &bignum_digits(b)[0], lenb);
- /*
- * The result handed back (new_lena here) contains not only the revised
- * length of a, but also a flag bit (handed back in its sign bit) to
- * indicate whether A and B have been swopped.
- */
- if (new_lena < 0)
- { Lisp_Object c = a;
- a = b;
- b = c;
- new_lena = clear_top_bit(new_lena);
- }
- /*
- * By this stage I have reduced A and B so that B is a single-precision
- * bignum (i.e. its value is at most 0x7fffffff). A special case will be
- * when B==0. To complete the GCD process I need to do a single remainder
- * operation (A%B) after which I have just machine arithmetic to do to
- * complete the job.
- */
- b0 = bignum_digits(b)[0];
- if (b0 == 0)
- { int32 a0 = bignum_digits(a)[new_lena];
- /*
- * The leading digit of a bignum is in effect one bit shorter than the
- * others (to allow for the fact that it is signed). In huge_gcd I did
- * not worry about that, but here (before I return) I need to restore a
- * proper state. Note that since the GCD is no larger than either original
- * number I am guaranteed to have space to put the padding zero I may need
- * to stick onto the number...
- */
- if ((a0 & 0x40000000) != 0)
- bignum_digits(a)[++new_lena] = 0;
- lena = (bignum_length(a) >> 2) - 2;
- numhdr(a) = make_bighdr(new_lena+2);
- lena = (lena + 1) & 0xfffffffeU;
- new_lena = (new_lena + 1) & 0xfffffffeU;
- if (new_lena != lena)
- bignum_digits(a)[new_lena+1] =
- make_bighdr(lena - new_lena);
- return a;
- }
- /*
- * Another special case is if we have just discovered that the numbers were
- * co-prime.
- */
- else if (b0 == 1) return fixnum_of_int(1);
- p = bignum_digits(b)[0];
- if (new_lena == 0) q = bignum_digits(a)[0];
- else
- { q = bignum_digits(a)[new_lena] % p;
- while (new_lena > 0)
- { unsigned32 qtemp;
- Ddivide(q, qtemp, q,
- bignum_digits(a)[--new_lena], p);
- }
- }
- if (p < q)
- { int32 r = p;
- p = q;
- q = r;
- }
- goto gcd_using_machine_arithmetic;
- }
- /*
- * The next 4 lines seem to be orphan code, no longer reachable.
- if (b == fixnum_of_int(0)) return a;
- a = rembi(a, b);
- errexit();
- */
- }
- else return aerror2("bad arg for gcd", a, b);
- }
- else return aerror2("bad arg for gcd", a, b);
- /*
- * If I drop out of the above IF statement I have reduced a and b to
- * fixnums, which I can compute with directly using C native arithmetic.
- */
- p = int_of_fixnum(a);
- q = int_of_fixnum(b);
- if (p < 0) p = -p;
- if (q < 0) q = -q;
- gcd_using_machine_arithmetic:
- #ifndef FAST_DIVISION
- /*
- * If your computer has a slow implementation of the C remainder
- * operation (p % q) but fast shifts then it may be worthwhile
- * implementing integer GCD thusly... On an ARM where division is
- * done in software my time tests showed the shift-and-subtract GCD
- * code over twice as fast as the version using the remainder operator.
- * Somewhat to my amazement, most other targets (at least when I use -O
- * to optimise this code) show this version faster than the more
- * obvious code. See also the discussion in Knuth vol II.
- */
- if (p == 0) p = q;
- else if (q != 0)
- { int twos = 0;
- /*
- * I shift p and q right until both are odd numbers, counting the
- * power of two that was needed for the GCD.
- * The contorted code here tries to avoid redundant tests on the
- * bottom bits of p and q.
- */
- for (;;)
- { if ((p & 1) == 0)
- { if ((q & 1) == 0)
- { p = p >> 1;
- q = q >> 1;
- twos++;
- continue;
- }
- do p = p >> 1; while ((p & 1) == 0);
- break;
- }
- while ((q & 1) == 0) q = q >> 1;
- break;
- }
- /*
- * Now p and q are both odd, so if I subtract one from the other
- * I get an even number that can properly be shifted right (because
- * multiples of 2 have already all be taken care of). On some RISC
- * architectures this test-and-subtract loop will run only a bit slower
- * than just one division operation, especially if the two numbers p and
- * q are small.
- */
- while (p != q)
- { if (p > q)
- { p = p - q;
- do p = p >> 1; while ((p & 1) == 0);
- }
- else
- { q = q - p;
- do q = q >> 1; while ((q & 1) == 0);
- }
- }
- /*
- * Finally I must re-instate the power of two that was taken out
- * earlier.
- */
- p = p << twos;
- }
- #else /* FAST_DIVISION */
- if (p < q)
- { int32 t = p;
- p = q;
- q = t;
- }
- while (q != 0)
- { int32 t = p % q;
- p = q;
- q = t;
- }
- #endif /* FAST_DIVISION */
- /*
- * In some cases the result will be a bignum. Even with fixnum inputs
- * gcd(-0x08000000, -0x08000000) == 0x08000000 which is a bignum. Yuk!
- * What is worse, in the case that I get here out of the gcd(big,big) code
- * I can end up with a value that needs to be a 2-word bignum - that happens
- * when the result is of the form #b01xx...
- */
- if ((p & 0x40000000) != 0) return make_two_word_bignum(0, p);
- else if (p >= 0x08000000) return make_one_word_bignum(p);
- else return fixnum_of_int(p);
- }
- Lisp_Object lcm(Lisp_Object a, Lisp_Object b)
- {
- Lisp_Object g, nil = C_nil;
- if (a == fixnum_of_int(0) ||
- b == fixnum_of_int(0)) return fixnum_of_int(0);
- stackcheck2(0, a, b);
- push2(a, b);
- g = gcd(a, b);
- errexitn(2);
- pop(b);
- b = quot2(b, g);
- errexitn(1);
- /*
- * b has already been through quot2(), so minusp can not fail...
- */
- if (minusp(b)) b = negate(b);
- pop(a);
- errexit();
- if (minusp(a)) /* can not fail */
- { push(b);
- a = negate(a);
- pop(b);
- }
- errexit();
- return times2(a, b);
- }
- Lisp_Object lognot(Lisp_Object a)
- {
- /*
- * bitwise negation can never cause a fixnum to need to grow into
- * a bignum. For bignums I implement ~a as -(a+1).
- */
- if (is_fixnum(a)) return (Lisp_Object)((int32)a ^ ((-1) << 4));
- else if (is_numbers(a) && is_bignum(a))
- { Lisp_Object nil;
- a = plus2(a, fixnum_of_int(1));
- errexit();
- return negate(a);
- }
- else return aerror1("Bad arg for xxx", a);
- }
- #ifdef __powerc
- /* If you have trouble compiling this just comment it out, please */
- #pragma options(!global_optimizer)
- #endif
- Lisp_Object ash(Lisp_Object a, Lisp_Object b)
- /*
- * Shift A left if B is positive, or right if B is negative. Right shifts
- * are arithmetic, i.e. as if 2s-complement values are used with negative
- * values having an infinite number of leading '1' bits.
- */
- {
- int32 bb;
- if (!is_fixnum(b)) return aerror2("bad arg for lshift", a, b);
- bb = int_of_fixnum(b);
- if (bb == 0) return a; /* Shifting by zero has no effect */
- if (is_fixnum(a))
- { int32 aa = int_of_fixnum(a);
- if (aa == 0) return a; /* Shifting zero leaves it unaltered */
- if (bb < 0)
- { bb = -bb;
- /*
- * Fixnums have only 28 data bits in them, and so right shifts by more than
- * that will lead to a result that is all 1s or all 0s. If I assume that
- * I am working with 32 bit words I can let a shift by 30 bits achieve this
- * effect.
- */
- if (bb > 30) bb = 30;
- #ifdef SIGNED_SHIFTS_ARE_LOGICAL
- /*
- * ANSI C (oh bother it) permits an implementation to have right shifts
- * on signed values as logical (ie. shifting in zeros into the vacated
- * positions. In that case since I really want an arithmetic shift here
- * I need to insert '1' bits by hand.
- */
- if (aa < 0)
- { aa = aa >> bb;
- aa |= (((int32)-1) << (32 - bb));
- }
- else
- #endif
- aa = aa >> bb;
- return fixnum_of_int(aa);
- }
- else if (bb < 31)
- { int32 ah = aa >> (31 - bb);
- #ifdef SIGNED_SHIFTS_ARE_LOGICAL
- if (aa < 0) ah |= (((int32)-1) << (bb+1));
- #endif
- aa = aa << bb;
- /*
- * Here (ah,aa) is a double-precision representation of the left-shifted
- * value. Note that this has just 31 valid bits in aa (but I have not
- * yet masked the top bit down to zero). Because a fixnum has only 28 bits
- * this can be at worst a 2-word bignum. But it may be a 1-word bignum or
- * a fixnum, and I can spend much effort deciding which!
- */
- if (ah == 0 && aa >= 0 && aa < 0x40000000)
- { if (aa < 0x08000000) return fixnum_of_int(aa);
- else return make_one_word_bignum(aa);
- }
- else if (ah == -1 && aa < 0 && aa >= -0x40000000)
- { if (aa >= -0x08000000) return fixnum_of_int(aa);
- else return make_one_word_bignum(aa);
- }
- return make_two_word_bignum(ah, clear_top_bit(aa));
- }
- else
- {
- Lisp_Object nil;
- /*
- * I drop through to here for a left-shift that will need to give a
- * bignum result, since the shift will be by at least 31 and the value
- * being shifted was non-zero. I deal with this by making the input into
- * bignum representation (though it would not generally be valid as one),
- * and dropping through to the general bignum shift code.
- */
- a = make_one_word_bignum(aa);
- errexit();
- /*
- * DROP THROUGH from here and pick up the general bignum shift code
- */
- }
- }
- else if (!is_numbers(a) || !is_bignum(a))
- return aerror2("bad arg for lshift", a, b);
- /*
- * Bignum case here
- */
- if (bb > 0)
- { int32 lena = (bignum_length(a) >> 2)-2;
- int32 words = bb / 31; /* words to shift left by */
- int32 bits = bb % 31; /* bits to shift left by */
- int32 msd = bignum_digits(a)[lena];
- int32 d0 = msd >> (31 - bits);
- int32 d1 = clear_top_bit(msd << bits);
- int32 i, lenc = lena + words;
- CSLbool longer = NO;
- Lisp_Object c, nil;
- #ifdef SIGNED_SHIFTS_ARE_LOGICAL
- if (msd < 0) d0 |= (((int32)-1) << (bits+1));
- #endif
- if (!((d0 == 0 && (d1 & 0x40000000) == 0) ||
- (d0 == -1 && (d1 & 0x40000000) != 0)))
- lenc++, longer = YES;
- push(a);
- c = getvector(TAG_NUMBERS, TYPE_BIGNUM, (lenc+2)<<2);
- pop(a);
- errexit();
- /*
- * Before I do anything else I will fill the result-vector with zero, so that
- * the parts that do not get A copied in will end up in a proper state. This
- * should include the word that pads the vector out to an even number of
- * words.
- */
- for (i=0; i<=lenc; i++) bignum_digits(c)[i] = 0;
- if ((lenc & 1) != 0) bignum_digits(c)[i] = 0; /* The spare word */
- d0 = 0;
- for (i=0; i<=lena; i++)
- { d1 = bignum_digits(a)[i];
- /*
- * The value of d0 here is positive, so there are no nasty issues of
- * logical vs arithmetic shifts to bother me.
- */
- bignum_digits(c)[words + i] =
- (d0 >> (31 - bits)) | clear_top_bit(d1 << bits);
- d0 = d1;
- }
- if (longer)
- { bignum_digits(c)[words+i] = d0 >> (31 - bits);
- #ifdef SIGNED_SHIFTS_ARE_LOGICAL
- if (d0 < 0) bignum_digits(c)[words+i] |= (((int32)-1) << (bits+1));
- #endif
- }
- else if (msd < 0) bignum_digits(c)[words+i-1] |= ~0x7fffffff;
- return c;
- }
- else
- /*
- * Here for bignum right-shifts.
- */
- { int32 lena = (bignum_length(a) >> 2)-2;
- int32 words = (-bb) / 31; /* words to shift right by */
- int32 bits = (-bb) % 31; /* bits to shift right by */
- int32 msd = bignum_digits(a)[lena];
- int32 d0 = msd >> bits;
- int32 d1 = clear_top_bit(msd << (31 - bits));
- int32 i, lenc = lena - words;
- CSLbool shorter = NO;
- Lisp_Object c, nil;
- #ifdef SIGNED_SHIFTS_ARE_LOGICAL
- if (msd < 0) d0 |= (((int32)-1) << (31 - bits));
- #endif
- if (bits != 0 &&
- ((d0 == 0 && (d1 & 0x40000000) == 0) ||
- (d0 == -1 && (d1 & 0x40000000) != 0)))
- lenc--, shorter = YES;
- /*
- * Maybe at this stage I can tell that the result will be zero (or -1).
- * If the result will be a single-precision value I will nevertheless
- * build it in a one-word bignum and then (if appropriate) extract the
- * fixnum value. This is slightly wasteful, but I do not (at present)
- * view right-shifting a bignum to get a fixnum as super speed-critical.
- */
- if (lenc < 0) return fixnum_of_int(msd < 0 ? -1 : 0);
- push(a);
- c = getvector(TAG_NUMBERS, TYPE_BIGNUM, (lenc+2)<<2);
- pop(a);
- errexit();
- if ((lenc & 1) != 0) bignum_digits(c)[lenc+1] = 0;/* The spare word */
- d0 = bignum_digits(a)[words];
- for (i=0; i<lenc; i++)
- { d1 = bignum_digits(a)[words+i+1];
- bignum_digits(c)[i] =
- (d0 >> bits) | clear_top_bit(d1 << (31 - bits));
- d0 = d1;
- }
- d1 = shorter ? msd : (msd < 0 ? -1 : 0);
- bignum_digits(c)[i] =
- (d0 >> bits) | (d1 << (31 - bits));
- /*
- * Now I see if the result ought to be represented as a fixnum.
- */
- if (lenc == 0)
- { d0 = bignum_digits(c)[0];
- d1 = d0 & (-0x08000000);
- if (d1 == 0 || d1 == -0x08000000) return fixnum_of_int(d0);
- }
- /*
- * Drop through if a genuine bignum result is needed.
- */
- return c;
- }
- }
- #ifdef __powerc
- /* If you have trouble compiling this just comment it out, please */
- #pragma options(global_optimizer)
- #endif
- Lisp_Object shrink_bignum(Lisp_Object a, int32 lena)
- { int32 msd = bignum_digits(a)[lena];
- int32 olen = lena;
- if (msd == 0)
- { while (lena > 0)
- { lena--;
- msd = bignum_digits(a)[lena];
- if (msd != 0) break;
- }
- if ((msd & 0x40000000) != 0) lena++;
- }
- else if (msd == -1)
- { while (lena > 0)
- { lena--;
- msd = bignum_digits(a)[lena];
- if (msd != 0x7fffffff) break;
- }
- if ((msd & 0x40000000) == 0) lena++;
- }
- if (lena == 0)
- { int32 w = msd & 0x78000000;
- if (w == 0 || w == 0x78000000) return fixnum_of_int(msd);
- }
- if (lena == olen) return a;
- /*
- * Here I had allocated too much space, so I have to trim it off and
- * put a dummy vector in to pad out the heap.
- */
- numhdr(a) -= pack_hdrlength(olen-lena);
- msd = bignum_digits(a)[lena];
- if ((msd & 0x40000000) != 0) bignum_digits(a)[lena] = msd | ~0x7fffffff;
- if ((lena & 1) != 0) bignum_digits(a)[++lena] = 0;
- lena++;
- olen = (olen+1)|1;
- if (lena == olen) return a;
- bignum_digits(a)[lena]=make_bighdr(olen-lena);
- return a;
- }
- static Lisp_Object logiorbb(Lisp_Object a, Lisp_Object b)
- { Lisp_Object nil;
- int32 lena, lenb, i, msd;
- errexit(); /* failure in make_one_word_bignum()? */
- lena = (bignum_length(a) >> 2) - 2;
- lenb = (bignum_length(b) >> 2) - 2;
- if (lena > lenb)
- { Lisp_Object c = a;
- int32 lenc = lena;
- a = b; lena = lenb;
- b = c; lenb = lenc;
- }
- /* Now b is at least as long as a */
- msd = bignum_digits(a)[lena];
- if (msd < 0)
- { push(b);
- a = copyb(a);
- pop(b);
- errexit();
- for (i=0; i<=lena; i++) bignum_digits(a)[i] |= bignum_digits(b)[i];
- }
- else
- { push(a);
- b = copyb(b);
- pop(a);
- errexit();
- for (i=0; i<=lena; i++) bignum_digits(b)[i] |= bignum_digits(a)[i];
- if (lena != lenb) return b;
- a = b;
- }
- return shrink_bignum(a, lena);
- }
- static Lisp_Object logiorib(Lisp_Object a, Lisp_Object b)
- {
- push(b);
- a = make_one_word_bignum(int_of_fixnum(a));
- pop(b);
- return logiorbb(a, b);
- }
- Lisp_Object logior2(Lisp_Object a, Lisp_Object b)
- {
- if (is_fixnum(a))
- { if (is_fixnum(b)) return (Lisp_Object)((int32)a | (int32)b);
- else if (is_numbers(b) && is_bignum(b)) return logiorib(a, b);
- else return aerror2("bad arg for logior", a, b);
- }
- else if (is_numbers(a) && is_bignum(a))
- { if (is_fixnum(b)) return logiorib(b, a);
- else if (is_numbers(b) && is_bignum(b)) return logiorbb(a, b);
- else return aerror2("bad arg for logior", a, b);
- }
- else return aerror2("bad arg for logior", a, b);
- }
- static Lisp_Object logxorbb(Lisp_Object a, Lisp_Object b)
- { Lisp_Object nil;
- int32 lena, lenb, i;
- unsigned32 w;
- errexit(); /* failure in make_one_word_bignum()? */
- lena = (bignum_length(a) >> 2) - 2;
- lenb = (bignum_length(b) >> 2) - 2;
- if (lena > lenb)
- { Lisp_Object c = a;
- int32 lenc = lena;
- a = b; lena = lenb;
- b = c; lenb = lenc;
- }
- /* Now b is at least as long as a */
- push(a);
- b = copyb(b);
- pop(a);
- errexit();
- for (i=0; i<lena; i++) bignum_digits(b)[i] ^= bignum_digits(a)[i];
- w = bignum_digits(a)[i];
- if (lena == lenb) bignum_digits(b)[i] ^= w;
- else
- { bignum_digits(b)[i] ^= clear_top_bit(w);
- if ((w & 0x80000000U) != 0)
- { for(i++; i<lenb; i++)
- bignum_digits(b)[i] = clear_top_bit(~bignum_digits(b)[i]);
- bignum_digits(b)[i] = ~bignum_digits(b)[i];
- }
- }
- return shrink_bignum(b, lenb);
- }
- static Lisp_Object logxorib(Lisp_Object a, Lisp_Object b)
- {
- push(b);
- a = make_one_word_bignum(int_of_fixnum(a));
- pop(b);
- return logxorbb(a, b);
- }
- Lisp_Object logxor2(Lisp_Object a, Lisp_Object b)
- {
- if (is_fixnum(a))
- { if (is_fixnum(b))
- return (Lisp_Object)(((int32)a ^ (int32)b) + TAG_FIXNUM);
- else if (is_numbers(b) && is_bignum(b)) return logxorib(a, b);
- else return aerror2("bad arg for logxor", a, b);
- }
- else if (is_numbers(a) && is_bignum(a))
- { if (is_fixnum(b)) return logxorib(b, a);
- else if (is_numbers(b) && is_bignum(b)) return logxorbb(a, b);
- else return aerror2("bad arg for logxor", a, b);
- }
- else return aerror2("bad arg for logxor", a, b);
- }
- Lisp_Object logeqv2(Lisp_Object a, Lisp_Object b)
- {
- if (is_fixnum(a))
- { if (is_fixnum(b))
- return (Lisp_Object)((int32)a ^ (int32)b ^
- (int32)fixnum_of_int(-1));
- else if (is_numbers(b) && is_bignum(b))
- { push(b);
- a = make_one_word_bignum(~int_of_fixnum(a));
- pop(b);
- return logxorbb(a, b);
- }
- else return aerror2("bad arg for logeqv", a, b);
- }
- else if (is_numbers(a) && is_bignum(a))
- { if (is_fixnum(b))
- { push(a);
- b = make_one_word_bignum(~int_of_fixnum(b));
- pop(a);
- return logxorbb(b, a);
- }
- else if (is_numbers(b) && is_bignum(b))
- { Lisp_Object nil;
- push(a);
- b = lognot(b);
- pop(a);
- errexit();
- return logxorbb(a, b);
- }
- else return aerror2("bad arg for logeqv", a, b);
- }
- else return aerror2("bad arg for logeqv", a, b);
- }
- static Lisp_Object logandbb(Lisp_Object a, Lisp_Object b)
- { Lisp_Object nil;
- int32 lena, lenb, i, msd;
- errexit(); /* failure in make_one_word_bignum()? */
- lena = (bignum_length(a) >> 2) - 2;
- lenb = (bignum_length(b) >> 2) - 2;
- if (lena > lenb)
- { Lisp_Object c = a;
- int32 lenc = lena;
- a = b; lena = lenb;
- b = c; lenb = lenc;
- }
- /* Now b is at least as long as a */
- msd = bignum_digits(a)[lena];
- if (msd >= 0)
- { push(b);
- a = copyb(a);
- pop(b);
- errexit();
- for (i=0; i<=lena; i++) bignum_digits(a)[i] &= bignum_digits(b)[i];
- }
- else
- { push(a);
- b = copyb(b);
- pop(a);
- errexit();
- for (i=0; i<=lena; i++) bignum_digits(b)[i] &= bignum_digits(a)[i];
- if (lena != lenb) return b;
- a = b;
- }
- return shrink_bignum(a, lena);
- }
- static Lisp_Object logandib(Lisp_Object a, Lisp_Object b)
- {
- push(b);
- a = make_one_word_bignum(int_of_fixnum(a));
- pop(b);
- return logandbb(a, b);
- }
- Lisp_Object logand2(Lisp_Object a, Lisp_Object b)
- {
- if (is_fixnum(a))
- { if (is_fixnum(b)) return (Lisp_Object)((int32)a & (int32)b);
- else if (is_numbers(b) && is_bignum(b)) return logandib(a, b);
- else return aerror2("bad arg for logand", a, b);
- }
- else if (is_numbers(a) && is_bignum(a))
- { if (is_fixnum(b)) return logandib(b, a);
- else if (is_numbers(b) && is_bignum(b)) return logandbb(a, b);
- else return aerror2("bad arg for logand", a, b);
- }
- else return aerror2("bad arg for logand", a, b);
- }
- /* end of arith09.c */
|