12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754 |
- /* arith06.c Copyright (C) 1990-99 Codemist Ltd */
- /*
- * Arithmetic functions... lots of Lisp entrypoints.
- * note that for CSL I want plus and times to be special forms.
- */
- /* Signature: 787eef23 07-Mar-2000 */
- #include <stdarg.h>
- #include <string.h>
- #include <ctype.h>
- #include <math.h>
- #include "machine.h"
- #include "tags.h"
- #include "cslerror.h"
- #include "externs.h"
- #include "arith.h"
- #include "entries.h"
- #ifdef TIMEOUT
- #include "timeout.h"
- #endif
- /*****************************************************************************/
- /*** Lisp-callable versions of arithmetic functions ***/
- /*****************************************************************************/
- Lisp_Object Ladd1(Lisp_Object nil, Lisp_Object a)
- {
- if (is_fixnum(a))
- { unsigned32 r = (unsigned32)a + 0x10;
- /* fixnums have data shifted left 4 bits */
- if (r == ~0x7ffffffe) /* The ONLY possible overflow case here */
- a = make_one_word_bignum(1 + int_of_fixnum(a));
- else return onevalue((Lisp_Object)r); /* the cheap case */
- }
- else a = plus2(a, fixnum_of_int(1));
- errexit();
- return onevalue(a);
- }
- Lisp_Object Lsub1(Lisp_Object nil, Lisp_Object a)
- {
- if (is_fixnum(a))
- { if (a == ~0x7ffffffe) /* The ONLY possible overflow case here */
- return make_one_word_bignum(int_of_fixnum(a) - 1);
- else return onevalue((Lisp_Object)(a - 0x10));
- }
- else a = plus2(a, fixnum_of_int(-1));
- errexit();
- return onevalue(a);
- }
- #ifdef COMMON
- Lisp_Object Lfloat_2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSL_IGNORE(nil);
- if (is_sfloat(b))
- { double d = float_of_number(a);
- return onevalue(make_sfloat(d));
- }
- else if (!is_bfloat(b)) return aerror1("bad arg for float", b);
- else
- { double d = float_of_number(a);
- return onevalue(make_boxfloat(d, type_of_header(flthdr(b))));
- }
- }
- #endif
- Lisp_Object Lfloat(Lisp_Object nil, Lisp_Object a)
- {
- double d;
- CSL_IGNORE(nil);
- if (!is_number(a)) return aerror1("bad arg for float", a);
- d = float_of_number(a);
- #ifdef COMMON
- /* Do we REALLY want single precision by default here? */
- return onevalue(make_boxfloat(d, TYPE_SINGLE_FLOAT));
- #else
- return onevalue(make_boxfloat(d, TYPE_DOUBLE_FLOAT));
- #endif
- }
- Lisp_Object Llognot(Lisp_Object nil, Lisp_Object a)
- {
- a = lognot(a);
- errexit();
- return onevalue(a);
- }
- Lisp_Object Lash(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- a = ash(a, b);
- errexit();
- return onevalue(a);
- }
- Lisp_Object Lash1(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- /*
- * This function multiplies or divides by a power of two. Note that
- * this corresponds to natural shifts on a sign-and-magnitude machine,
- * but is not an "arithmetic" shift as that term is understood on
- * 2's complement machines.
- */
- {
- CSLbool negative = NO;
- if (!is_fixnum(b)) return aerror("ash1");
- if (minusp(a))
- { negative = YES;
- a = negate(a);
- }
- errexit();
- a = ash(a, b);
- errexit();
- if (negative)
- { a = negate(a);
- errexit();
- }
- return onevalue(a);
- }
- static int msd_table[256] =
- {
- 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
- 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
- 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
- };
- Lisp_Object Lmsd(Lisp_Object nil, Lisp_Object a)
- {
- int32 top;
- int32 r = 0;
- CSL_IGNORE(nil);
- if (is_fixnum(a)) top = int_of_fixnum(a);
- else if (is_numbers(a))
- { Header h = numhdr(a);
- if (!is_bignum_header(h)) return aerror1("bad arg for msd", a);
- r = length_of_header(h)/4 - 2;
- top = bignum_digits(a)[r];
- r = 31*r;
- }
- else return aerror1("bad arg for msd", a);
- if (top < 0) return aerror1("negative arg for msd", a); /* -ve arg */
- /*
- * Note that top may be zero here, but in that case the next word down of
- * the bignum involved MUST be fully normalised with its top bit set.
- * The effect of this code is that I return (msd 0) => 0.
- */
- if (top >= 0x10000) r += 16, top >>= 16;
- if (top >= 0x100) r += 8, top >>= 8;
- return onevalue(fixnum_of_int(r + msd_table[top]));
- }
- static int lsd_table[256] =
- {
- 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
- 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
- };
- Lisp_Object Llsd(Lisp_Object nil, Lisp_Object a)
- {
- int32 top;
- int32 r = 0;
- CSL_IGNORE(nil);
- if (is_fixnum(a))
- { top = int_of_fixnum(a);
- /* lsd(0) is taken to have the value 0 here - it is a bit of an odd case */
- if (top == 0) return onevalue(a);
- }
- else if (is_numbers(a))
- { Header h = numhdr(a);
- if (!is_bignum_header(h)) return aerror1("bad arg for lsd", a);
- while ((top = bignum_digits(a)[r]) == 0) r++;
- r = 31*r;
- }
- else return aerror1("bad arg for lsd", a);
- if (top < 0) return aerror1("negative arg for lsd", a); /* -ve arg */
- /* top is non-zero here */
- if ((top & 0xffffu) == 0) r += 16, top >>= 16;
- if ((top & 0xff) == 0) r += 8, top >>= 8;
- return onevalue(fixnum_of_int(r + lsd_table[top & 0xff]));
- }
- Lisp_Object Linorm(Lisp_Object nil, Lisp_Object a, Lisp_Object k)
- /*
- * This is a piece of magic especially designed to speed up the
- * REDUCE big-float code. It adjusts the integer a until it has
- * just k bits, and returns a correction to the associated exponent.
- * It combines aspects of msd, lsd, ash and a rounding operation.
- */
- {
- int32 top, bottom, kk, bits;
- int32 rtop = 0, rbottom = 0;
- CSLbool was_fixnum = NO, was_negative = NO, round_up;
- if (is_fixnum(k) && (int32)k >= 0) kk = int_of_fixnum(k);
- else return aerror1("bad args for inorm", k);
- if (is_fixnum(a))
- { top = int_of_fixnum(a);
- if (top == 0) return aerror1("zero arg for inorm", a);
- bottom = top;
- was_fixnum = YES;
- }
- else if (is_numbers(a))
- { Header h = numhdr(a);
- if (!is_bignum_header(h)) return aerror1("bad arg for inorm", a);
- rtop = length_of_header(h)/4 - 2;
- top = bignum_digits(a)[rtop];
- was_negative = (top < 0);
- rtop = 31*rtop;
- while ((bottom = bignum_digits(a)[rbottom]) == 0) rbottom++;
- rbottom = 31*rbottom;
- }
- else return aerror1("bad arg for inorm", a);
- if (top < 0) top = ~top; /* Now top is guaranteed positive */
- if (top >= 0x10000) rtop += 16, top >>= 16;
- if (top >= 0x100) rtop += 8, top >>= 8;
- rtop = rtop + msd_table[top];
- if ((bottom & 0xffffu) == 0) rbottom += 16, bottom >>= 16;
- if ((bottom & 0xff) == 0) rbottom += 8, bottom >>= 8;
- rbottom = rbottom + lsd_table[bottom & 0xff];
- /*
- * The next line adjusts for the odd case where the input number is
- * minus an exact power of 2, in which case finding its most significant bit
- * involved just a little correction.
- */
- round_up = was_negative;
- if (rtop == rbottom) rtop++;
- bits = rtop - rbottom; /* bits used in the number */
- if (bits <= kk) kk = rbottom; /* no rounding wanted */
- else if (was_fixnum)
- { int bit;
- /*
- * If the input was a fixnum and I need to decrease its precision
- * I will do it in-line here, mainly so that the bignum code that comes
- * later will not have to worry so much about the possibility of having
- * any fixnums around.
- */
- kk = rtop - kk;
- bit = ((int32)1) << (kk - 1);
- top = int_of_fixnum(a);
- if (top < 0)
- { top = -top;
- /*
- * It is almost the case that for negative values I should round if the
- * bit I want to test is a zero (rather than a 1), but this is not true when
- * the bit involved is the least significant set bit in the word. So to
- * keep it simple I negate, test, adjust and negate back when working with
- * single precision numbers. I also do the shifting right on the positive
- * value to avoid problems with the bits that get shifted off, and with
- * computers where right shifts are logical rather than arithmetic.
- */
- if ((top & bit) != 0) top += bit;
- top = top >> kk;
- top = -top;
- }
- else
- { if ((top & bit) != 0) top += bit;
- top = top >> kk;
- }
- /*
- * All the shifts I do here move only zero bits off the bottom of the
- * word, and so there are no issues about +ve vs -ve numbers to bother me.
- */
- while ((top & 0xf) == 0)
- { top = top >> 4;
- #ifdef SIGNED_SHIFTS_ARE_LOGICAL
- if (top & 0x08000000) top |= ~0x0fffffff;
- #endif
- kk += 4;
- }
- while ((top & 0x1) == 0)
- { top = top >> 1;
- #ifdef SIGNED_SHIFTS_ARE_LOGICAL
- if (top & 0x40000000) top |= ~0x7fffffff;
- #endif
- kk += 1;
- }
- a = cons(fixnum_of_int(top), fixnum_of_int(kk));
- errexit();
- return onevalue(a);
- }
- else
- { int32 wk, bk;
- /*
- * Here my input was a bignum and I have established that I not only need
- * to shift it right but that I will need to lose some non-zero digits from
- * the right hand end. To cope with this I need to decide whether it will
- * round up or down, and then perform the appropriate shifts, including a
- * post-normalisation to ensure that the mantissa of the number as returned
- * is odd.
- */
- kk = rtop - kk;
- if (rbottom == kk-1) round_up = YES;
- else
- { int32 wk1 = (kk-1) / 31, bk1 = (kk-1) % 31;
- int32 bit = ((int32)1) << bk1;
- round_up = ((bit & bignum_digits(a)[wk1]) != 0);
- if (was_negative) round_up = !round_up;
- }
- /*
- * Now I need to find out how much I will need to shift AFTER rounding
- * and truncation to leave me with a properly normalised value.
- */
- wk = kk / 31, bk = kk % 31;
- /*
- * If I have a positive value that is not being rounded up I want to skip
- * over 0 bits until I find a 1. Similarly for a negative value that is
- * being rounded up.
- */
- if (was_negative == round_up)
- {
- for (;;)
- { int32 bit = ((int32)1) << bk;
- if ((bignum_digits(a)[wk] & bit) != 0) break;
- kk++;
- bk++;
- if (bk == 31) bk = 0, wk++;
- }
- }
- else
- /*
- * A positive value that is being rounded up or a negative one that is not
- * should cause me to skip over 1 bits until I find a 0. The 0 I find
- * will be promoted into a 1 achieve the rounding I need.
- */
- {
- for (;;)
- { int32 bit = ((int32)1) << bk;
- if ((bignum_digits(a)[wk] & bit) == 0) break;
- kk++;
- bk++;
- if (bk == 31) bk = 0, wk++;
- }
- }
- }
- if (kk != 0)
- { a = ash(a, fixnum_of_int(-kk));
- errexit();
- /*
- * All the adjustment I now need to allow for right-shifting negative
- * numbers and rounding off - at all reduces to just forcing the bottom bit
- * of the result I compute here to be a 1!
- */
- if (is_fixnum(a)) a |= 0x10;
- else bignum_digits(a)[0] |= 1;
- }
- a = cons(a, fixnum_of_int(kk));
- errexit();
- return onevalue(a);
- }
- #ifdef COMMON
- /*
- * Implemented as a special form for Standard Lisp. Must be a regular
- * function in Common Lisp.
- */
- static Lisp_Object MS_CDECL Lplus(Lisp_Object nil, int nargs, ...)
- /*
- * This adds up a whole bunch of numbers together.
- * (+ a1 a2 a3 a4 a5) is computed as
- * (+ a1 (+ a2 (* a3 (+ a4 a5))))
- */
- {
- va_list a;
- int i;
- Lisp_Object r;
- if (nargs == 0) return fixnum_of_int(0);
- va_start(a, nargs);
- push_args(a, nargs);
- /*
- * The actual args have been passed a C args - I can not afford to
- * risk garbage collection until they have all been moved somewhere safe,
- * and here that safe place is the Lisp stack. I have to delay checking for
- * overflow on same until all args have been pushed.
- */
- stackcheck0(nargs);
- pop(r);
- nil = C_nil;
- for (i = 1; i<nargs; i++)
- { Lisp_Object w;
- pop(w);
- if (is_fixnum(r) && is_fixnum(w))
- { int32 c = int_of_fixnum(r) + int_of_fixnum(w);
- int32 w1 = c & fix_mask;
- if (w1 == 0 || w1 == fix_mask)
- { r = fixnum_of_int(c);
- continue;
- }
- }
- r = plus2(r, w);
- errexitn(nargs-i);
- }
- return onevalue(r);
- }
- static Lisp_Object MS_CDECL Ldifference(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- Lisp_Object r;
- int i;
- if (nargs == 0) return onevalue(fixnum_of_int(0));
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- nil = C_nil;
- if (nargs == 1)
- { pop(r);
- r = negate(r);
- errexit();
- return onevalue(r);
- }
- r = stack[1-nargs];
- /*
- * (- a1 a2 a3 a4) is computed as
- * (((a1 - a4) - a3) - a2) which does not seem too bad here.
- */
- for (i=1; i<nargs; i++)
- { Lisp_Object w;
- pop(w);
- r = difference2(r, w);
- errexitn(nargs-i);
- }
- popv(1);
- return onevalue(r);
- }
- static Lisp_Object MS_CDECL Ltimes(Lisp_Object nil, int nargs, ...)
- /*
- * This multiplies a whole bunch of numbers together.
- */
- {
- va_list a;
- int i;
- Lisp_Object r;
- if (nargs == 0) return fixnum_of_int(1);
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- pop(r);
- nil = C_nil;
- for (i=1; i<nargs; i++)
- { Lisp_Object w;
- pop(w);
- r = times2(r, w);
- errexitn(nargs-i);
- }
- return onevalue(r);
- }
- Lisp_Object MS_CDECL Lquotient_n(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- Lisp_Object r;
- int i;
- if (nargs == 0) return onevalue(fixnum_of_int(1));
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- if (nargs == 1)
- { pop(r);
- r = CLquot2(fixnum_of_int(1), r);
- errexit();
- return onevalue(r);
- }
- r = stack[1-nargs];
- for (i=1; i<nargs; i++)
- { Lisp_Object w;
- pop(w);
- r = CLquot2(r, w);
- errexitn(nargs-i);
- }
- popv(1);
- return onevalue(r);
- }
- Lisp_Object Lquotient(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- a = CLquot2(a, b);
- errexit();
- return onevalue(a);
- }
- static Lisp_Object LSLquotient(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- a = quot2(a, b);
- errexit();
- return onevalue(a);
- }
- Lisp_Object Lquotient_1(Lisp_Object nil, Lisp_Object b)
- {
- b = CLquot2(fixnum_of_int(1), b);
- errexit();
- return onevalue(b);
- }
- #else /* COMMON */
- Lisp_Object Lquotient(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- a = quot2(a, b);
- errexit();
- return onevalue(a);
- }
- #endif /* COMMON */
- Lisp_Object Ldivide(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- Lisp_Object q, r;
- stackcheck2(0, a, b);
- push2(a, b);
- q = quot2(a, b);
- pop2(b, a);
- errexit();
- push(q);
- r = Cremainder(a, b);
- pop(q);
- errexit();
- q = cons(q, r);
- errexit();
- return onevalue(q);
- }
- Lisp_Object Lrem(Lisp_Object nil, Lisp_Object p, Lisp_Object q)
- {
- p = Cremainder(p, q);
- errexit();
- return onevalue(p);
- }
- Lisp_Object Lmod(Lisp_Object nil, Lisp_Object p, Lisp_Object q)
- {
- p = modulus(p, q);
- errexit();
- return onevalue(p);
- }
- Lisp_Object Lplus2(Lisp_Object nil, Lisp_Object p, Lisp_Object q)
- {
- if (is_fixnum(p) && is_fixnum(q))
- { int32 c = int_of_fixnum(p) + int_of_fixnum(q);
- int32 w = c & fix_mask;
- if (w == 0 || w == fix_mask) return onevalue(fixnum_of_int(c));
- }
- p = plus2(p, q);
- errexit();
- return onevalue(p);
- }
- Lisp_Object Ltimes2(Lisp_Object nil, Lisp_Object p,
- Lisp_Object q)
- {
- p = times2(p, q);
- errexit();
- return onevalue(p);
- }
- Lisp_Object Ldifference2(Lisp_Object nil, Lisp_Object a,
- Lisp_Object b)
- {
- a = difference2(a, b);
- errexit();
- return onevalue(a);
- }
- Lisp_Object Lminus(Lisp_Object nil, Lisp_Object a)
- {
- a = negate(a);
- errexit();
- return onevalue(a);
- }
- typedef Lisp_Object boolopfn(Lisp_Object, Lisp_Object);
- static struct bfz { boolopfn *fn; Lisp_Object base; } boolop_array[] =
- {
- {0, 0},
- {logand2, fixnum_of_int(-1)},
- {0, 0},
- {0, 0},
- {0, 0},
- {0, 0},
- {logxor2, fixnum_of_int(0)},
- {logior2, fixnum_of_int(0)},
- {0, 0},
- {logeqv2, fixnum_of_int(-1)},
- {0, 0},
- {0, 0},
- {0, 0},
- {0, 0},
- {0, 0},
- {0, 0}
- };
- static Lisp_Object MS_CDECL Lboolfn(Lisp_Object env, int nargs, ...)
- {
- va_list a;
- Lisp_Object nil = C_nil, r;
- int i;
- int32 what = int_of_fixnum(env);
- if (nargs == 0) return onevalue(boolop_array[what].base);
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- pop(r);
- for (i=1; i<nargs; i++)
- { Lisp_Object w;
- pop(w);
- r = (*boolop_array[what].fn)(r, w);
- errexitn(nargs-i);
- }
- return onevalue(r);
- }
- Lisp_Object Lzerop(Lisp_Object nil, Lisp_Object a)
- {
- CSLbool fg;
- fg = zerop(a);
- errexit();
- return onevalue(Lispify_predicate(fg));
- }
- Lisp_Object Lonep(Lisp_Object nil, Lisp_Object a)
- {
- CSLbool fg;
- fg = onep(a);
- errexit();
- return onevalue(Lispify_predicate(fg));
- }
- Lisp_Object Levenp(Lisp_Object nil, Lisp_Object a)
- {
- switch ((int)a & TAG_BITS)
- {
- case TAG_FIXNUM:
- return onevalue(((int32)a & 0x10) == 0 ? lisp_true : nil);
- case TAG_NUMBERS:
- if (is_bignum(a))
- return onevalue((bignum_digits(a)[0] & 1) == 0 ? lisp_true : nil);
- /* else drop through */
- default:
- return aerror1("bad arg for evenp", a);
- }
- }
- Lisp_Object Loddp(Lisp_Object nil, Lisp_Object a)
- {
- switch ((int)a & TAG_BITS)
- {
- case TAG_FIXNUM:
- return onevalue(((int32)a & 0x10) != 0 ? lisp_true : nil);
- case TAG_NUMBERS:
- if (is_bignum(a))
- return onevalue((bignum_digits(a)[0] & 1) != 0 ? lisp_true : nil);
- /* else drop through */
- default:
- return aerror1("oddp", a);
- }
- }
- Lisp_Object Lminusp(Lisp_Object nil, Lisp_Object a)
- {
- /*
- * For CSL I demand (minusp <non-number>) = nil. Note that this ensures
- * that minusp will not fail... so nil wil be intact on the way out.
- */
- return onevalue(is_number(a) && minusp(a) ? lisp_true : nil);
- }
- Lisp_Object Lplusp(Lisp_Object nil, Lisp_Object a)
- {
- return onevalue(is_number(a) && plusp(a) ? lisp_true : nil);
- }
- /*
- * The next few functions take an arbitrary number of args in Common
- * Lisp mode but just 2 args in CSL.
- */
- #ifdef COMMON
- Lisp_Object MS_CDECL Leqn_n(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- int i;
- Lisp_Object r;
- if (nargs < 2) return onevalue(lisp_true);
- if (nargs > ARG_CUT_OFF) return aerror("too many args for =");
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- r = stack[1-nargs];
- for (i = 1; i<nargs; i++)
- { Lisp_Object s = stack[1+i-nargs];
- CSLbool w = numeq2(r, s);
- nil = C_nil;
- if (exception_pending()) { popv(nargs); return nil; }
- if (!w)
- { popv(nargs);
- return onevalue(nil);
- }
- r = s;
- }
- popv(nargs);
- return onevalue(lisp_true);
- }
- Lisp_Object Leqn(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool w = numeq2(a, b);
- errexit();
- return onevalue(w ? lisp_true : nil);
- }
- Lisp_Object Leqn_1(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- CSL_IGNORE(a);
- return onevalue(lisp_true);
- }
- Lisp_Object MS_CDECL Llessp_n(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- int i;
- Lisp_Object r;
- if (nargs < 2) return onevalue(lisp_true);
- if (nargs > ARG_CUT_OFF) return aerror("too many args for <");
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- r = stack[1-nargs];
- for (i = 1; i<nargs; i++)
- { Lisp_Object s = stack[1+i-nargs];
- CSLbool w = lessp2(r, s);
- nil = C_nil;
- if (exception_pending()) { va_end(a); return nil; }
- if (!w)
- { va_end(a);
- return onevalue(nil);
- }
- r = s;
- }
- va_end(a);
- return onevalue(lisp_true);
- }
- Lisp_Object Llessp(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool w = lessp2(a, b);
- errexit();
- return onevalue(w ? lisp_true : nil);
- }
- Lisp_Object Llessp_1(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- CSL_IGNORE(a);
- return onevalue(lisp_true);
- }
- Lisp_Object MS_CDECL Lgreaterp_n(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- int i;
- Lisp_Object r;
- if (nargs < 2) return onevalue(lisp_true);
- if (nargs > ARG_CUT_OFF) return aerror("too many args for >");
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- r = stack[1-nargs];
- for (i = 1; i<nargs; i++)
- { Lisp_Object s = stack[1+i-nargs];
- CSLbool w = lessp2(s, r);
- nil = C_nil;
- if (exception_pending()) { popv(nargs); return nil; }
- if (!w)
- { popv(nargs);
- return onevalue(nil);
- }
- r = s;
- }
- popv(nargs);
- return onevalue(lisp_true);
- }
- Lisp_Object Lgreaterp(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool w = lessp2(b, a);
- errexit();
- return onevalue(w ? lisp_true : nil);
- }
- Lisp_Object Lgreaterp_1(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- CSL_IGNORE(a);
- return onevalue(lisp_true);
- }
- static Lisp_Object MS_CDECL Lneqn(Lisp_Object nil, int nargs, ...)
- /*
- * /= is supposed to check that NO pair of args match.
- */
- {
- int i, j;
- Lisp_Object *r;
- va_list a;
- if (nargs < 2) return onevalue(lisp_true);
- r = (Lisp_Object *)&work_1;
- if (nargs > ARG_CUT_OFF) return aerror("too many args for /=");
- va_start(a, nargs);
- for (i=0; i<nargs; i++) r[i] = va_arg(a, Lisp_Object);
- va_end(a);
- /*
- * This bit is OK provided numeq2 does not mess with work_1, ...
- * and I think that unless funny tracing or errors occur that should
- * be OK.
- */
- for (i = 1; i<nargs; i++)
- { Lisp_Object n1 = r[i];
- for (j=0; j<i; j++)
- { Lisp_Object n2 = r[j];
- CSLbool w = numeq2(n1, n2);
- nil = C_nil;
- if (exception_pending()) return nil;
- if (w) return onevalue(nil);
- }
- }
- return onevalue(lisp_true);
- }
- Lisp_Object Lneq_2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool w = numeq2(a, b);
- errexit();
- return onevalue(w ? nil : lisp_true);
- }
- Lisp_Object Lneq_1(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- CSL_IGNORE(a);
- return onevalue(lisp_true);
- }
- Lisp_Object MS_CDECL Lgeq_n(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- int i;
- Lisp_Object r;
- if (nargs < 2) return onevalue(lisp_true);
- if (nargs > ARG_CUT_OFF) return aerror("too many args for >=");
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- r = stack[1-nargs];
- for (i = 1; i<nargs; i++)
- { Lisp_Object s = stack[1+i-nargs];
- CSLbool w = lesseq2(s, r);
- nil = C_nil;
- if (exception_pending()) { popv(nargs); return nil; }
- if (!w)
- { popv(nargs);
- return onevalue(nil);
- }
- r = s;
- }
- popv(nargs);
- return onevalue(lisp_true);
- }
- Lisp_Object Lgeq(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool w = lesseq2(b, a);
- errexit();
- return onevalue(w ? lisp_true : nil);
- }
- Lisp_Object Lgeq_1(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- CSL_IGNORE(a);
- return onevalue(lisp_true);
- }
- Lisp_Object MS_CDECL Lleq_n(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- int i;
- Lisp_Object r;
- if (nargs < 2) return onevalue(lisp_true);
- if (nargs > ARG_CUT_OFF) return aerror("too many args for <=");
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- r = stack[1-nargs];
- for (i = 1; i<nargs; i++)
- { Lisp_Object s = stack[1+i-nargs];
- CSLbool fg = lesseq2(r, s);
- nil = C_nil;
- if (exception_pending()) { popv(nargs);; return nil; }
- if (!fg)
- { popv(nargs);
- return onevalue(nil);
- }
- r = s;
- }
- popv(nargs);
- return onevalue(lisp_true);
- }
- Lisp_Object Lleq(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool w = lesseq2(a, b);
- errexit();
- return onevalue(w ? lisp_true : nil);
- }
- Lisp_Object Lleq_1(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- CSL_IGNORE(a);
- return onevalue(lisp_true);
- }
- #else /* COMMON */
- Lisp_Object Leqn(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool r;
- r = numeq2(a, b);
- errexit();
- return onevalue(Lispify_predicate(r));
- }
- Lisp_Object Llessp(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool r;
- /*
- * I have strongish expectations that fixnum arithmetic is so imporant that
- * it is worth lifting the fixnum comparison up here.
- */
- if (is_fixnum(a) && is_fixnum(b))
- return onevalue(Lispify_predicate(a<b));
- r = lessp2(a, b);
- errexit();
- return onevalue(Lispify_predicate(r));
- }
- Lisp_Object Lgreaterp(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool r;
- if (is_fixnum(a) && is_fixnum(b))
- return onevalue(Lispify_predicate(a>b));
- r = lessp2(b, a);
- errexit();
- return onevalue(Lispify_predicate(r));
- }
- Lisp_Object Lgeq(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool r;
- if (is_fixnum(a) && is_fixnum(b))
- return onevalue(Lispify_predicate(a>=b));
- r = lessp2(a, b);
- errexit();
- return onevalue(Lispify_predicate(!r));
- }
- Lisp_Object Lleq(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool r;
- if (is_fixnum(a) && is_fixnum(b))
- return onevalue(Lispify_predicate(a<=b));
- r = lessp2(b, a);
- errexit();
- return onevalue(Lispify_predicate(!r));
- }
- #endif /* COMMON */
- Lisp_Object Lmax2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool w;
- CSL_IGNORE(nil);
- push2(a, b);
- w = lessp2(a, b);
- pop2(b, a);
- errexit();
- if (w) return onevalue(b);
- else return onevalue(a);
- }
- Lisp_Object Lmin2(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- CSLbool w;
- CSL_IGNORE(nil);
- push2(a, b);
- w = lessp2(b, a);
- pop2(b, a);
- errexit();
- if (w) return onevalue(b);
- else return onevalue(a);
- }
- Lisp_Object MS_CDECL Lmax(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- int i;
- Lisp_Object r;
- if (nargs < 1) return aerror("max");
- if (nargs > ARG_CUT_OFF) return aerror("too many args for max");
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- r = stack[1-nargs];
- for (i = 1; i<nargs; i++)
- { Lisp_Object s = stack[1+i-nargs];
- CSLbool fg;
- push2(r, s);
- fg = lessp2(r, s);
- pop2(s, r);
- nil = C_nil;
- if (exception_pending())
- { popv(nargs);
- return nil;
- }
- if (fg) r = s;
- }
- popv(nargs);
- return onevalue(r);
- }
- Lisp_Object MS_CDECL Lmin(Lisp_Object nil, int nargs, ...)
- {
- va_list a;
- int i;
- Lisp_Object r;
- if (nargs < 1) return aerror("min");
- if (nargs > ARG_CUT_OFF) return aerror("too many args for min");
- va_start(a, nargs);
- push_args(a, nargs);
- stackcheck0(nargs);
- r = stack[1-nargs];
- for (i = 1; i<nargs; i++)
- { Lisp_Object s = stack[1+i-nargs];
- CSLbool fg;
- push2(r, s);
- fg = lessp2(s, r);
- pop2(s, r);
- nil = C_nil;
- if (exception_pending())
- { popv(nargs);
- return nil;
- }
- if (fg) r = s;
- }
- popv(nargs);
- return onevalue(r);
- }
- Lisp_Object Lrational(Lisp_Object nil, Lisp_Object a)
- {
- a = rational(a);
- errexit();
- return onevalue(a);
- }
- #ifdef COMMON
- static Lisp_Object Lrationalize(Lisp_Object nil, Lisp_Object a)
- {
- a = rationalize(a);
- errexit();
- return onevalue(a);
- }
- #endif
- /*
- * The following random number generator is taken from the Norcroft
- * C library, but is included here so that random sequences will be
- * identical across all implementations of CSL, and because I have bad
- * and pessimistic expectations about the quality of random number
- * generators built into typical C libraries. That is not to say that
- * I ought not to be somewhat cynical about the code I have implemented
- * here! But it is tolerably fast and less dreadful than those old
- * 32-bit linear congruential mistakes.
- */
- static unsigned32 random_number_seed[55];
- static int random_j = 23, random_k = 54;
- static CSLbool randomization_request = NO;
- /*
- * If the user specifies a random number seed of zero I will try to
- * start things in as unpredictable a state as I reasonably can. To
- * achieve this I will update a block of unpredictable data at a
- * number of points during a CSL run, garnering incremental amounts
- * of fairly low grade "randomness" from timing information and the
- * memory addresses that get allocated to CSL. Because it will take
- * a while for such information to build up I arrange that specifying
- * a random seed of zero does not do anything at once (and in particular
- * the implicit call of this nature when CSL starts doe snot do much),
- * but the unpredictable mess I accumulate is inspected the first time
- * any user actually asks for a random value. Since user keyboard input
- * contributes to the clutter it could be that a cautious user will ask the
- * user to type in a long string of gibberish before asking for any
- * random numbers, and the gibberish typed will then in fact form part
- * of the seed that will be used. On Windows I can hook in and make
- * mouse activity etc contribute to the seed too.
- */
- static void randomize()
- {
- int i;
- random_j = 23;
- random_k = 54;
- for (i=20; i<48; i+=4)
- { MD5_Init();
- MD5_Update(unpredictable, sizeof(unpredictable));
- MD5_Final((unsigned char *)&random_number_seed[i]);
- inject_randomness((int)time(NULL));
- }
- /*
- * Note that I do not initialise the whole array of seed values here.
- * Leaving something over can count as part of the unpredictability! But I
- * do try to put in mess through the parts of the seed that will be used
- * first so that any obvious patterns will get clobbered.
- */
- random_number_seed[0] |= 1;
- randomization_request = NO;
- }
- unsigned32 Crand(void)
- {
- /*
- * See Knuth vol 2 section 3.2.2 for a discussion of this random
- * number generator.
- */
- unsigned32 temp;
- if (randomization_request) randomize();
- temp = (random_number_seed[random_k] += random_number_seed[random_j]);
- if (--random_j < 0) random_j = 54, --random_k;
- else if (--random_k < 0) random_k = 54;
- return temp;
- }
- void Csrand(unsigned32 seed, unsigned32 seed2)
- {
- /*
- * This allows you to put 64 bits of seed into the random sequence,
- * but it is very improbable that you have any good source of randomness
- * that good to start with! The input seeds are scrambled using md5
- * and then rather crudely widened to fill the whole array of seed data.
- * If the seed is specified as (0,0) then I will initialise things using
- * information from the time of day and the clock. This is NOT very
- * good, especially since I only use portable C-library ways of reading
- * the time. But it will at least not repeat for any single user and
- * since the clock information is then scrambled via md5 it will APPEAR
- * fairly unpredictable.
- */
- int i;
- random_j = 23;
- random_k = 54;
- i = 0;
- if (seed == 0 && seed2 == 0)
- { randomization_request = YES;
- return;
- }
- randomization_request = NO;
- random_number_seed[0] = seed;
- random_number_seed[1] = 0x12345678;
- random_number_seed[2] = 0xa7086dee;
- random_number_seed[3] = seed2;
- /*
- * Next I will scramble the seed data that I have been given using md5
- * and place the resulting 128 bits of digested stuff in the start of
- * the seed vector.
- */
- MD5_Init();
- MD5_Update((unsigned char *)random_number_seed,
- 4*sizeof(random_number_seed[0]));
- MD5_Final((unsigned char *)&random_number_seed[0]);
- /*
- * The remainder of the vector gets filled using a simple linear
- * congruential scheme.
- */
- i = 4;
- seed = random_number_seed[0];
- while (i<55)
- { seed = 69069*seed + 1725307361; /* computed modulo 2^32 */
- random_number_seed[i++] = seed;
- }
- /*
- * I would like to make the least significant bits a little less
- * regular even to start with, so I xor in from one of the words that
- * md5 gave me.
- */
- seed = random_number_seed[1];
- i = 55-30;
- while (i<55)
- { random_number_seed[i++] ^= seed & 1;
- seed = seed >> 1;
- }
- /*
- * If all the least significant bits were zero to start with they would
- * always stay that way, so I force one of them to be 1.
- */
- random_number_seed[21] |= 1;
- }
- #ifdef COMMON
- Lisp_Object Lrandom_2(Lisp_Object nil, Lisp_Object a, Lisp_Object bb)
- {
- Lisp_Object b;
- /*
- * Common Lisp expects an optional second arg to be used for the random
- * state - at present I do not support that, but it will not be too hard
- * when I get around to it...
- */
- b = bb;
- CSL_IGNORE(nil);
- if (is_fixnum(a))
- { int32 v = int_of_fixnum(a), p, q;
- if (v <= 0) return aerror1("random", a);
- /* (random 1) always returns zero - a rather silly case! */
- else if (v == 1) return onevalue(fixnum_of_int(0));
- /*
- * I generate a value that is an exact multiple of my range (v) and
- * pick random bitpatterns until I find one less than that. On average
- * I will have only VERY slightly less than one draw needed, and doing things
- * this way ought to ensure that my pseudo random numbers are uniformly
- * distributed provided that the underlying generator is well behaved.
- */
- p = v*(0x7fffffff/v);
- do q = ((unsigned32)Crand()) >> 1; while (q > p);
- return onevalue(fixnum_of_int(q % v));
- }
- if (is_numbers(a))
- { int32 len, len1, msd;
- unsigned32 w, w1;
- Lisp_Object r;
- if (!is_bignum(a)) return aerror1("random", a);
- len = bignum_length(a);
- push(a);
- r = getvector(TAG_NUMBERS, TYPE_BIGNUM, len);
- pop(a);
- errexit();
- len1 = (len>>2)-2;
- restart:
- len = len1;
- msd = bignum_digits(a)[len];
- if (msd < 0) return aerror("negative arg for random"); /* -ve arg */
- if (msd == 0)
- { bignum_digits(r)[len] = 0;
- len--;
- msd = bignum_digits(a)[len];
- }
- for (;;)
- { w = (0xffffffffU/((unsigned32)msd+1U))*((unsigned32)msd+1U);
- do w1 = (unsigned32)Crand(); while (w1 >= w);
- w1 = w1%((unsigned32)msd+1U);
- bignum_digits(r)[len] = w1;
- if ((int32)w1 != msd) break;
- /*
- * The loop to restart on the next line is when the random value I
- * have built up word by word ends up being equal to the input number - I
- * will discard it and start again in that case.
- */
- if (len == 0) goto restart;
- len--;
- msd = bignum_digits(a)[len];
- }
- /*
- * having got some leading digits properly set up I can fill in the rest
- * as totally independent bit-patterns.
- */
- for (len--;len>=0; len--)
- bignum_digits(r)[len] = ((unsigned32)Crand())>>1;
- return onevalue(shrink_bignum(r, len1));
- }
- if (is_bfloat(a))
- { Header h = flthdr(a);
- double d = float_of_number(a), v;
- /*
- * The calculation here turns 62 bits of integer data into a floating
- * point number in the range 0.0 (inclusive) to 1.0 (exclusive). Well,
- * to be more precise, rounding the value to the machine's floating point
- * format may round it up to be exactly 1.0, so I discard and cases where
- * that happens (once in several blue moons...). If I wrote code that
- * knew exactly how many bits my floating point format had I could avoid
- * the need for that extra test, but it does not seem very painful to me
- * and I prefer the more portable code.
- */
- do
- { v = ((double)(int32)(Crand() & 0x7fffffff)) / TWO_31;
- v += (double)(int32)(Crand() & 0x7fffffff);
- v /= TWO_31;
- v *= d;
- } while (v == d);
- a = make_boxfloat(v, type_of_header(h));
- errexit();
- return onevalue(a);
- }
- if (is_sfloat(a))
- { Float_union d;
- float v;
- d.i = a - TAG_SFLOAT;
- /*
- * similar idea to boxfloat case, but only 31 bits randomness used.
- * SOFTWARE_FLOATING_POINT conversion needed here, maybe
- */
- do
- { v = (float)(int32)(Crand() & 0x7fffffff)/(float)TWO_31;
- v = v*d.f;
- } while (v == d.f);
- d.f = v;
- return onevalue((d.i & ~(int32)0xf) + TAG_SFLOAT);
- }
- return aerror1("random", a);
- }
- #endif
- Lisp_Object Lrandom(Lisp_Object nil, Lisp_Object a)
- {
- CSL_IGNORE(nil);
- if (is_fixnum(a))
- { int32 v = int_of_fixnum(a), p, q;
- if (v <= 0) return aerror1("random", a);
- /* (random 1) always returns zero - a rather silly case! */
- else if (v == 1) return onevalue(fixnum_of_int(0));
- /*
- * I generate a value that is an exact multiple of my range (v) and
- * pick random bitpatterns until I find one less than that. On average
- * I will have only VERY slightly less than one draw needed, and doing things
- * this way ought to ensure that my pseudo random numbers are uniformly
- * distributed provided that the underlying generator is well behaved.
- */
- p = v*(0x7fffffff/v);
- do q = ((unsigned32)Crand()) >> 1; while (q > p);
- return onevalue(fixnum_of_int(q % v));
- }
- if (is_numbers(a))
- { int32 len, len1, msd;
- unsigned32 w, w1;
- Lisp_Object r;
- if (!is_bignum(a)) return aerror1("random", a);
- len = bignum_length(a);
- push(a);
- r = getvector(TAG_NUMBERS, TYPE_BIGNUM, len);
- pop(a);
- errexit();
- len1 = (len>>2)-2;
- restart:
- len = len1;
- msd = bignum_digits(a)[len];
- if (msd < 0) return aerror("negative arg for random"); /* -ve arg */
- if (msd == 0)
- { bignum_digits(r)[len] = 0;
- len--;
- msd = bignum_digits(a)[len];
- }
- for (;;)
- { w = (0xffffffffU/((unsigned32)msd+1U))*((unsigned32)msd+1U);
- do w1 = (unsigned32)Crand(); while (w1 >= w);
- w1 = w1%((unsigned32)msd+1U);
- bignum_digits(r)[len] = w1;
- if ((int32)w1 != msd) break;
- /*
- * The loop to restart on the next line is when the random value I
- * have built up word by word ends up being equal to the input number - I
- * will discard it and start again in that case.
- */
- if (len == 0) goto restart;
- len--;
- msd = bignum_digits(a)[len];
- }
- /*
- * having got some leading digits properly set up I can fill in the rest
- * as totally independent bit-patterns.
- */
- for (len--;len>=0; len--)
- bignum_digits(r)[len] = ((unsigned32)Crand())>>1;
- return onevalue(shrink_bignum(r, len1));
- }
- if (is_bfloat(a))
- { Header h = flthdr(a);
- double d = float_of_number(a), v;
- /*
- * The calculation here turns 62 bits of integer data into a floating
- * point number in the range 0.0 (inclusive) to 1.0 (exclusive). Well,
- * to be more precise, rounding the value to the machine's floating point
- * format may round it up to be exactly 1.0, so I discard and cases where
- * that happens (once in several blue moons...). If I wrote code that
- * knew exactly how many bits my floating point format had I could avoid
- * the need for that extra test, but it does not seem very painful to me
- * and I prefer the more portable code.
- */
- do
- { v = ((double)(int32)(Crand() & 0x7fffffff)) / TWO_31;
- v += (double)(int32)(Crand() & 0x7fffffff);
- v /= TWO_31;
- v *= d;
- } while (v == d);
- a = make_boxfloat(v, type_of_header(h));
- errexit();
- return onevalue(a);
- }
- #ifdef COMMON
- if (is_sfloat(a))
- { Float_union d;
- float v;
- d.i = a - TAG_SFLOAT;
- /*
- * similar idea to boxfloat case, but only 31 bits randomness used.
- * SOFTWARE_FLOATING_POINT conversion needed here, maybe
- */
- do
- { v = (float)(int32)(Crand() & 0x7fffffff)/(float)TWO_31;
- v = v*d.f;
- } while (v == d.f);
- d.f = v;
- return onevalue((d.i & ~(int32)0xf) + TAG_SFLOAT);
- }
- #endif
- return aerror1("random", a);
- }
- Lisp_Object MS_CDECL Lnext_random(Lisp_Object nil, int nargs, ...)
- /*
- * Returns a random positive fixnum. 27 bits in this Lisp!
- */
- {
- int32 r;
- argcheck(nargs, 0, "next-random");
- CSL_IGNORE(nil);
- r = Crand();
- return onevalue((Lisp_Object)((r & 0x7ffffff0) + TAG_FIXNUM));
- }
- Lisp_Object Lmake_random_state(Lisp_Object nil, Lisp_Object a, Lisp_Object b)
- {
- /*
- * Nasty temporary hack here to allow me to set the seed for the
- * random number generator in Standard Lisp mode. I need to re-think
- * this soon before it feels frozen in! Oops - too late!!!
- */
- CSL_IGNORE(b);
- if (!is_fixnum(a)) return aerror1("make-random-state", a);
- Csrand(int_of_fixnum(a),
- is_fixnum(b) ? int_of_fixnum(b) : 0);
- return onevalue(nil);
- }
- Lisp_Object Lmake_random_state1(Lisp_Object nil, Lisp_Object a)
- {
- if (!is_fixnum(a)) return aerror1("make-random-state", a);
- Csrand(int_of_fixnum(a), 0);
- return onevalue(nil);
- }
- /*
- * The function md5() can be given a number or a string as an argument,
- * and it uses the md5 message digest algorithm to reduce it to a
- * numeric value in the range 0 to 2^128.
- * Well actually I will also allow an arbitrary expression, which I
- * will treat as if it has to be printed...
- */
- Lisp_Object Lmd5(Lisp_Object env, Lisp_Object a)
- {
- Lisp_Object nil = C_nil;
- Lisp_Object r;
- unsigned char md[16];
- unsigned32 v0, v1, v2, v3, v4;
- int32 len, i;
- if (is_fixnum(a))
- { sprintf((char *)md, "%.8lx", (unsigned long)a);
- MD5_Init();
- MD5_Update(md, 8);
- }
- else if (is_numbers(a) && is_bignum_header(numhdr(a)))
- { len = length_of_header(numhdr(a));
- MD5_Init();
- for (i=4; i<len; i+=4)
- { sprintf((char *)md, "%.8lx", (unsigned long)bignum_digits(a)[(i-4)/4]);
- MD5_Update(md, 8);
- }
- }
- else if (is_vector(a) && type_of_header(vechdr(a)) == TYPE_STRING)
- { len = length_of_header(vechdr(a));
- MD5_Init();
- MD5_Update((unsigned char *)(a - TAG_VECTOR + 4), len-4);
- }
- else checksum(a);
- MD5_Final(md);
- v0 = md[0] + (md[1]<<8) + (md[2]<<16) + (md[3]<<24);
- v1 = md[4] + (md[5]<<8) + (md[6]<<16) + (md[7]<<24);
- v2 = md[8] + (md[9]<<8) + (md[10]<<16) + (md[11]<<24);
- v3 = md[12] + (md[13]<<8) + (md[14]<<16) + (md[15]<<24);
- v4 = v3 >> 28;
- v3 = ((v3 << 3) | (v2 >> 29)) & 0x7fffffff;
- v2 = ((v2 << 2) | (v1 >> 30)) & 0x7fffffff;
- v1 = ((v1 << 1) | (v0 >> 31)) & 0x7fffffff;
- v0 &= 0x7fffffff;
- /*
- * Note the funny tests. This is because in my representation the
- * top word of a bignum is a 2s complement signed value and to keep clear
- * of overflow that means I use an extra digit slightly before one might
- * imagine it is necessary!
- */
- if (v4 != 0 || (v3 & 0x40000000) != 0) len = 24;
- else if (v3 != 0 || (v2 & 0x40000000) != 0) len = 20;
- else if (v2 != 0 || (v1 & 0x40000000) != 0) len = 16;
- else if (v1 != 0 || (v0 & 0x40000000) != 0) len = 12;
- else if ((v0 & fix_mask) != 0) len = 8;
- else return onevalue(fixnum_of_int(v0));
- r = getvector(TAG_NUMBERS, TYPE_BIGNUM, len);
- errexit();
- switch (len)
- {
- case 24:
- case 20: bignum_digits(r)[4] = v4; /* zeros out padding word as necessary */
- bignum_digits(r)[3] = v3;
- case 16:
- case 12: bignum_digits(r)[2] = v2;
- bignum_digits(r)[1] = v1;
- case 8: bignum_digits(r)[0] = v0;
- break;
- }
- /* validate_number("MD5", r, r, r); */
- return onevalue(r);
- }
- /*
- * md60 is a function that uses MD5 but then returns just about 60 bits
- * of number not 128. It is for use when the full 128 bits of checksum
- * would be clumsy overkill.
- */
- Lisp_Object Lmd60(Lisp_Object env, Lisp_Object a)
- {
- Lisp_Object nil = C_nil;
- Lisp_Object r;
- unsigned char md[16];
- unsigned32 v0, v1;
- int32 len, i;
- if (is_fixnum(a))
- { sprintf((char *)md, "%.8lx", (unsigned long)a);
- MD5_Init();
- MD5_Update(md, 8);
- }
- else if (is_numbers(a) && is_bignum_header(numhdr(a)))
- { len = length_of_header(numhdr(a));
- MD5_Init();
- for (i=4; i<len; i+=4)
- { sprintf((char *)md, "%.8lx", (unsigned long)bignum_digits(a)[(i-4)/4]);
- MD5_Update(md, 8);
- }
- }
- else if (is_vector(a) && type_of_header(vechdr(a)) == TYPE_STRING)
- { len = length_of_header(vechdr(a));
- MD5_Init();
- MD5_Update((unsigned char *)(a - TAG_VECTOR + 4), len-4);
- }
- else checksum(a);
- MD5_Final(md);
- v0 = md[0] + (md[1]<<8) + (md[2]<<16) + (md[3]<<24);
- v1 = md[4] + (md[5]<<8) + (md[6]<<16) + (md[7]<<24);
- v1 = ((v1 << 1) | (v0 >> 31)) & 0x3fffffff;
- v0 &= 0x7fffffff;
- if (v1 != 0 || (v0 & 0x40000000) != 0) len = 12;
- else if ((v0 & fix_mask) != 0) len = 8;
- else return onevalue(fixnum_of_int(v0));
- r = getvector(TAG_NUMBERS, TYPE_BIGNUM, len);
- errexit();
- switch (len)
- {
- case 12: bignum_digits(r)[2] = 0;
- bignum_digits(r)[1] = v1;
- case 8: bignum_digits(r)[0] = v0;
- break;
- }
- /* validate_number("MD60", r, r, r); */
- return onevalue(r);
- }
- static Lisp_Object Llogand2(Lisp_Object env, Lisp_Object a1, Lisp_Object a2)
- {
- return Lboolfn(env, 2, a1, a2);
- }
- static Lisp_Object Llogeqv2(Lisp_Object env, Lisp_Object a1, Lisp_Object a2)
- {
- return Lboolfn(env, 2, a1, a2);
- }
- static Lisp_Object Llogxor2(Lisp_Object env, Lisp_Object a1, Lisp_Object a2)
- {
- return Lboolfn(env, 2, a1, a2);
- }
- static Lisp_Object Llogor2(Lisp_Object env, Lisp_Object a1, Lisp_Object a2)
- {
- return Lboolfn(env, 2, a1, a2);
- }
- static Lisp_Object MS_CDECL Ldemo_mode(Lisp_Object nil, int nargs, ...)
- {
- argcheck(nargs, 0, "demo-mode");
- #ifdef DEMO_BUILD
- if (qfn1(compiler_symbol) == undefined1)
- { Csrand(demo_key1, demo_key2);
- return onevalue(lisp_true);
- }
- #endif
- return onevalue(nil);
- }
- setup_type const arith06_setup[] =
- {
- {"ash", too_few_2, Lash, wrong_no_2},
- {"ash1", too_few_2, Lash1, wrong_no_2},
- {"divide", too_few_2, Ldivide, wrong_no_2},
- {"evenp", Levenp, too_many_1, wrong_no_1},
- {"inorm", too_few_2, Linorm, wrong_no_2},
- {"logand", Lidentity, Llogand2, Lboolfn},
- {"logeqv", Lidentity, Llogeqv2, Lboolfn},
- {"lognot", Llognot, too_many_1, wrong_no_1},
- {"logxor", Lidentity, Llogxor2, Lboolfn},
- {"lsd", Llsd, too_many_1, wrong_no_1},
- {"make-random-state", Lmake_random_state1, Lmake_random_state, wrong_no_2},
- {"max", Lidentity, Lmax2, Lmax},
- {"max2", too_few_2, Lmax2, wrong_no_2},
- {"min", Lidentity, Lmin2, Lmin},
- {"min2", too_few_2, Lmin2, wrong_no_2},
- {"minus", Lminus, too_many_1, wrong_no_1},
- {"minusp", Lminusp, too_many_1, wrong_no_1},
- {"mod", too_few_2, Lmod, wrong_no_2},
- {"msd", Lmsd, too_many_1, wrong_no_1},
- {"oddp", Loddp, too_many_1, wrong_no_1},
- {"onep", Lonep, too_many_1, wrong_no_1},
- {"plus2", too_few_2, Lplus2, wrong_no_2},
- {"plusp", Lplusp, too_many_1, wrong_no_1},
- {"rational", Lrational, too_many_1, wrong_no_1},
- {"times2", too_few_2, Ltimes2, wrong_no_2},
- {"zerop", Lzerop, too_many_1, wrong_no_1},
- {"md5", Lmd5, too_many_1, wrong_no_1},
- {"md60", Lmd60, too_many_1, wrong_no_1},
- {"demo-mode", wrong_no_0a, wrong_no_0b, Ldemo_mode},
- #ifdef COMMON
- {"*", Lidentity, Ltimes2, Ltimes},
- {"+", Lidentity, Lplus2, Lplus},
- {"-", Lminus, Ldifference2, Ldifference},
- {"/", Lquotient_1, Lquotient, Lquotient_n},
- {"/=", Lneq_1, Lneq_2, Lneqn},
- {"1+", Ladd1, too_many_1, wrong_no_1},
- {"1-", Lsub1, too_many_1, wrong_no_1},
- {"<", Llessp_1, Llessp, Llessp_n},
- {"<=", Lleq_1, Lleq, Lleq_n},
- {"=", Leqn_1, Leqn, Leqn_n},
- {">", Lgreaterp_1, Lgreaterp, Lgreaterp_n},
- {">=", Lgeq_1, Lgeq, Lgeq_n},
- {"float", Lfloat, Lfloat_2, wrong_no_1},
- {"logior", Lidentity, Llogor2, Lboolfn},
- {"random", Lrandom, Lrandom_2, wrong_no_1},
- {"rationalize", Lrationalize, too_many_1, wrong_no_1},
- {"rem", too_few_2, Lrem, wrong_no_2},
- /*
- * I also provide the old style names to make porting code easier for me
- */
- {"times", Lidentity, Ltimes2, Ltimes},
- {"plus", Lidentity, Lplus2, Lplus},
- {"times2", too_few_2, Ltimes2, wrong_no_2},
- {"plus2", too_few_2, Lplus2, wrong_no_2},
- {"minus", Lminus, too_many_1, wrong_no_1},
- {"difference", too_few_2, Ldifference2, Ldifference},
- /* I leave QUOTIENT as the integer-truncating form, while "/" gives ratios */
- {"quotient", too_few_2, LSLquotient, wrong_no_2},
- {"remainder", too_few_2, Lrem, wrong_no_2},
- {"add1", Ladd1, too_many_1, wrong_no_1},
- {"sub1", Lsub1, too_many_1, wrong_no_1},
- {"lessp", Llessp_1, Llessp, Llessp_n},
- {"leq", Lleq_1, Lleq, Lleq_n},
- {"eqn", Leqn_1, Leqn, Leqn_n},
- {"greaterp", Lgreaterp_1, Lgreaterp, Lgreaterp_n},
- {"geq", Lgeq_1, Lgeq, Lgeq_n},
- {"next-random-number", wrong_no_0a, wrong_no_0b, Lnext_random},
- #else
- {"add1", Ladd1, too_many_1, wrong_no_1},
- {"difference", too_few_2, Ldifference2, wrong_no_2},
- {"eqn", too_few_2, Leqn, wrong_no_2},
- {"float", Lfloat, too_many_1, wrong_no_1},
- {"geq", too_few_2, Lgeq, wrong_no_2},
- {"greaterp", too_few_2, Lgreaterp, wrong_no_2},
- {"leq", too_few_2, Lleq, wrong_no_2},
- {"lessp", too_few_2, Llessp, wrong_no_2},
- {"logor", Lidentity, Llogor2, Lboolfn},
- {"quotient", too_few_2, Lquotient, wrong_no_2},
- /*
- * I used to call these just random and next-random-number, but REDUCE
- * wants its own versions of those (for cross-Lisp consistency) so I use
- * alternative names here.
- */
- {"random-number", Lrandom, too_many_1, wrong_no_1},
- {"random-fixnum", wrong_no_0a, wrong_no_0b, Lnext_random},
- {"remainder", too_few_2, Lrem, wrong_no_2},
- {"sub1", Lsub1, too_many_1, wrong_no_1},
- #endif
- {NULL, 0, 0, 0}
- };
- /* end of arith06.c */
|