12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- % Test file for XIDEAL package (Groebner bases for exterior algebra)
- % Just make sure excalc has been loaded
- load_package excalc$
- % Declare exterior form variables
- pform x=0,y=0,z=0,t=0,u=1,v=1,w=1,f(i)=1,h=0,hx=0,ht=0;
- % Set switches for reduced Groebner bases in graded ideals
- on xfullreduce;
- % Reductions with xmodulo (all should be zero)
- d x^d y xmodulo {d x - d y};
- d x^d y^d z xmodulo {d x^d y - d z^d t};
- d x^d z^d t xmodulo {d x^d y - d z^d t};
- v^d x^d y xmodulo {d t^u - v^w,
- w^u - d x^d y};
- d t^u^d z xmodulo {d t^u - v^w,
- u^d z - d x^d y,
- d t^d y - d x^v};
- f(3)^f(4)^f(5)^f(6)
- xmodulo {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)};
- f(1)^f(4)^f(5)^f(6)
- xmodulo {f(1)^f(2) + f(2)^f(3) + f(3)^f(4) + f(4)^f(5) + f(5)^f(6)};
- % Exterior system for heat equation on 1st jet bundle
- S := {d h - ht*d t - hx*d x,
- d ht^d t + d hx^d x,
- d hx^d t - ht*d x^d t};
- % Check that it's closed.
- dS := (for each a in S collect d a) xmodulo S;
- % Some Groebner bases (0-forms generate the trivial ideal)
- gb := xideal {x, d y};
- gb := xideal {f(1)^f(2) + f(3)^f(4)};
- gb := xideal {f(1)^f(2), f(1)^f(3)+f(2)^f(4)+f(5)^f(6)};
- % The same again, but not reduced
- off xfullreduce;
- gb := xideal {x, d y};
- gb := xideal {f(1)^f(2) + f(3)^f(4)};
- gb := xideal {f(1)^f(2), f(1)^f(3)+f(2)^f(4)+f(5)^f(6)};
- % Reductions with a ready Groebner basis (not all zero)
- on xfullreduce;
- gb := xideal {f(1)^f(2) + f(3)^f(4) + f(5)^f(6)};
- f(1)^f(3)^f(4) xmodulop gb;
- f(3)^f(4)^f(5)^f(6) xmodulop gb;
- % Non-graded ideals
- on xfullreduce;
- % Left and right ideals are no longer the same
-
- d t^(d z+d x^d y) xmodulo {d z+d x^d y};
- (d z+d x^d y)^d t xmodulo {d z+d x^d y};
- % Higher order forms can now reduce lower order ones
- d x xmodulo {d y^d z + d x,d x^d y + d z};
- % Anything with a 0-form term generates the trivial ideal!!
- gb := xideal {x + d y};
- gb := xideal {1 + f(1) + f(1)^f(2) + f(2)^f(3)^f(4) + f(3)^f(4)^f(5)^f(6)};
- end;
|