123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- % Author: Alan Barnes <barnesa@aston.ac.uk>.
- psexplim 8;
- % expand as far as 8th power (default is 6)
- cos!-series:=ps(cos x,x,0);
- sin!-series:=ps(sin x,x,0);
- atan!-series:=ps(atan x,x,0);
- tan!-series:=ps(tan x,x,0);
- cos!-series*tan!-series; % should series for sin(x)
- df(cos!-series,x); % series for sin(x) again
- cos!-series/atan!-series;
- ps(cos!-series/atan!-series,x,0); % should be expanded
- tmp:=ps(1/(1+x^2),x,infinity);
- df(tmp,x);
- ps(df(1/(1+x^2),x),x,infinity);
- tmp*x; % not expanded as a single power series
- ps(tmp*x,x,infinity); % now expanded
- ps(1/(a*x-b*x^2),x,a/b); % pole at expansion point
- ps(cos!-series*x,x,2);
- tmp:=ps(x/atan!-series,x,0);
- tmp1:=ps(atan!-series/x,x,0);
- tmp*tmp1; % should be 1, of course
- cos!-sin!-series:=ps(cos sin!-series,x,0);
- % cos(sin(x))
- tmp:=cos!-sin!-series^2;
- tmp1:=ps((sin(sin!-series))^2,x,0);
- tmp+tmp1; % sin^2 + cos^2
- psfunction tmp1;
- % function represented by power series tmp1
- tmp:=tan!-series^2;
- psdepvar tmp;
- % in case we have forgotten the dependent variable
- psexpansionpt tmp; % .... or the expansion point
- psterm(tmp,6); % select 6th term
- tmp1:=ps(1/(cos x)^2,x,0);
- tmp1-tmp; % sec^2-tan^2
- ps(int(e^(x^2),x),x,0); % integrator not called
- tmp:=ps(1/(y+x),x,0);
- ps(int(tmp,y),x,0); % integrator called on each coefficient
- pscompose(cos!-series,sin!-series);
- % power series composition cos(sin(x)) again
- cos!-sin!-series;
- % should be same as previous result
- psfunction cos!-sin!-series;
- tmp:=ps(log x,x,1);
- tmp1:=pscompose(tmp, cos!-series);
- % power series composition of log(cos(x))
- df(tmp1,x);
- psreverse tan!-series;
- % should be series for atan y
- atan!-series;
- tmp:=ps(e^x,x,0);
- psreverse tmp;
- % NB expansion of log y in powers of (y-1)
- end;
|