SYMMETRY.TST 1.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485
  1. % test symmetry package
  2. % implementation of theory of linear representations
  3. % for small groups
  4. availablegroups();
  5. printgroup(D4);
  6. generators(D4);
  7. charactertable(D4);
  8. characternr(D4,1);
  9. characternr(D4,2);
  10. characternr(D4,3);
  11. characternr(D4,4);
  12. characternr(D4,5);
  13. irreduciblereptable(D4);
  14. irreduciblerepnr(D4,1);
  15. irreduciblerepnr(D4,2);
  16. irreduciblerepnr(D4,3);
  17. irreduciblerepnr(D4,4);
  18. irreduciblerepnr(D4,5);
  19. rr:=mat((1,0,0,0,0),
  20. (0,0,1,0,0),
  21. (0,0,0,1,0),
  22. (0,0,0,0,1),
  23. (0,1,0,0,0));
  24. sp:=mat((1,0,0,0,0),
  25. (0,0,1,0,0),
  26. (0,1,0,0,0),
  27. (0,0,0,0,1),
  28. (0,0,0,1,0));
  29. rep:={D4,rD4=rr,sD4=sp};
  30. canonicaldecomposition(rep);
  31. character(rep);
  32. symmetrybasis(rep,1);
  33. symmetrybasis(rep,2);
  34. symmetrybasis(rep,3);
  35. symmetrybasis(rep,4);
  36. symmetrybasis(rep,5);
  37. symmetrybasispart(rep,5);
  38. allsymmetrybases(rep);
  39. % Ritz matrix from Stiefel, Faessler p. 200
  40. m:=mat((eps,a,a,a,a),
  41. (a ,d,b,g,b),
  42. (a ,b,d,b,g),
  43. (a ,g,b,d,b),
  44. (a ,b,g,b,d));
  45. diagonalize(m,rep);
  46. % eigenvalues are obvious. Eigenvectors may be obtained with
  47. % the coordinate transformation matrix given by allsymmetrybases.
  48. r1:=mat((0,1,0),
  49. (0,0,1),
  50. (1,0,0));
  51. repC3:={C3,rC3=r1};
  52. mC3:=mat((a,b,c),
  53. (c,a,b),
  54. (b,c,a));
  55. diagonalize(mC3,repC3);
  56. % note difference between real and complex case
  57. on complex;
  58. diagonalize(mC3,repC3);
  59. off complex;
  60. end;