SPDE.TST 1.9 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. %Appendix (Testfile).
  2. %This appendix is a test file. The symmetry groups for various
  3. %equations or systems of equations are determined. The variable
  4. %PCLASS has the default value 0 and may be changed by the user
  5. %before running it. The output may be compared with the results
  6. %which are given in the references.
  7. %The Burgers equations
  8. deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
  9. cresys deq 1$ simpsys()$ result()$
  10. %The Kadomtsev-Petviashvili equation
  11. deq 1:=3*u(1,3,3)+u(1,2,2,2,2)+6*u(1,2,2)*u 1
  12. +6*u(1,2)**2+4*u(1,1,2)$
  13. cresys deq 1$ simpsys()$ result()$
  14. %The modified Kadomtsev-Petviashvili equation
  15. deq 1:=u(1,1,2)-u(1,2,2,2,2)-3*u(1,3,3)
  16. +6*u(1,2)**2*u(1,2,2)+6*u(1,3)*u(1,2,2)$
  17. cresys deq 1$ simpsys()$ result()$
  18. %The real- and the imaginary part of the nonlinear Schroedinger
  19. %equation
  20. deq 1:= u(1,1)+u(2,2,2)+2*u 1**2*u 2+2*u 2**3$
  21. deq 2:=-u(2,1)+u(1,2,2)+2*u 1*u 2**2+2*u 1**3$
  22. %Because this is not a single equation the two assignments
  23. sder 1:=u(2,2,2)$ sder 2:=u(1,2,2)$
  24. %are necessary.
  25. cresys()$ simpsys()$ result()$
  26. %The symmetries of the system comprising the four equations
  27. deq 1:=u(1,1)+u 1*u(1,2)+u(1,2,2)$
  28. deq 2:=u(2,1)+u(2,2,2)$
  29. deq 3:=u 1*u 2-2*u(2,2)$
  30. deq 4:=4*u(2,1)+u 2*(u 1**2+2*u(1,2))$
  31. sder 1:=u(1,2,2)$ sder 2:=u(2,2,2)$ sder 3:=u(2,2)$ sder 4:=u(2,1)$
  32. %is obtained by calling
  33. cresys()$ simpsys()$
  34. df(c 5,x 1):=-df(c 5,x 2,2)$
  35. df(c 5,x 2,x 1):=-df(c 5,x 2,3)$
  36. simpsys()$ result()$
  37. %The symmetries of the subsystem comprising equation 1 and 3 are
  38. %obtained by
  39. cresys(deq 1,deq 3)$ simpsys()$ result()$
  40. %The result for all possible subsystems is discussed in detail in
  41. %''Symmetries and Involution Systems: Some Experiments in Computer
  42. %Algebra'', contribution to the Proceedings of the Oberwolfach
  43. %Meeting on Nonlinear Evolution Equations, Summer 1986, to appear.
  44. end;