123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- on errcont;
- bounds (x,x=(1 .. 2));
- bounds (2*x,x=(1 .. 2));
- bounds (x**3,x=(1 .. 2));
- bounds (x*y,x=(1 .. 2),y=(-1 .. 0));
- bounds (x**3+y,x=(1 .. 2),y=(-1 .. 0));
- bounds (x**3/y,{x=(1 .. 2),y=(-1 .. -0.5)});
- bounds (x**3/y,x=(1 .. 2),y=(-1 .. -0.5));
- % unbounded expression (pole at y=0)
- bounds (x**3/y,x=(1 .. 2),y=(-1 .. 0.5));
- on rounded;
- bounds(e**x,x=(1 .. 2));
- bounds((1/2)**x,x=(1 .. 2));
- off rounded;
- bounds(abs x,x=(1 .. 2));
- bounds(abs x,x=(-3 .. 2));
- bounds(abs x,x=(-3 .. -2));
- bounds(sin x,x=(1 .. 2));
-
- on rounded;
- bounds(sin x,x=(1 .. 2));
- bounds(sin x,x=(1 .. 10));
- bounds(sin x,x=(1001 .. 1002));
- bounds(log x,x=(1 .. 10));
- bounds(tan x,x=(1 .. 1.1));
- bounds(cot x,x=(1 .. 1.1));
- bounds(asin x,x=(-0.6 .. 0.6));
- bounds(acos x,x=(-0.6 .. 0.6));
- bounds(sqrt(x),x=(1 .. 1.1));
- bounds(x**(7/3),x=(1 .. 1.1));
- bounds(x**y,x=(1 .. 1.1),y=(2 .. 4));
-
- off rounded;
- % MINIMA (steepest descent)
- % Rosenbrock function (minimum extremely hard to find).
- fktn := 100*(x1^2-x2)^2 + (1-x1)^2;
- num_min(fktn, x1=-1.2, x2=1, accuracy=6);
- % infinitely many local minima
- num_min(sin(x)+x/5, x=1);
- % bivariate polynomial
- num_min(x^4 + 3 x^2 * y + 5 y^2 + x + y, x=0.1, y=0.2);
- % ROOTS (non polynomial: damped Newton)
- num_solve (cos x -x, x=0,accuracy=6);
- % automatically randomized starting point
- num_solve (cos x -x,x, accuracy=6);
-
- % syntactical errors: forms do not evaluate to purely
- % numerical values
- num_solve (cos x -x, x=a);
- num_solve (cos x -a, x=0);
- num_solve (sin x = 0, x=3);
- % blows up: no real solution exists
- num_solve(sin x = 2, x=1);
- % solution in complex plane(only fond with complex starting point):
- on complex;
- num_solve(sin x = 2, x=1+i);
- off complex;
- % blows up for derivative 0 in starting point
- num_solve(x^2-1, x=0);
- % succeeds because of perturbed starting point
- num_solve(x^2-1, x=0.1);
- % bivariate equation system
- num_solve({sin x=cos y, x + y = 1},{x=1,y=2});
- on rounded,evallhseqp;
- sub(ws,{sin x=cos y, x + y = 1});
- off rounded,evallhseqp;
-
- % temporal member of the Barry Simon test sequence
- sys :={sin (x) + y^2 + log(z) = 7,
- 3*x + 2^y - z^3 = -90,
- x^2 + y^2 + z^(1/2) = 16};
- sol:=num_solve(sys,{x=1,y=1,z=1});
- on rounded;
- for each s in sys collect sub(sol,lhs s-rhs s);
- off rounded;
- clear sys,sol;
-
- % 2 examples taken from Nowak/Weimann (Tech.Rep TR91-10, ZIB Berlin)
-
- % #1: exp/sin combination
- on rounded;
- sys := {e**(x1**2 + x2**2)-3, x1 + x2 - sin(3(x1 + x2))};
- num_solve(sys,x1=0.81, x2=0.82);
- sub(ws,sys);
- % 2nd example (semiconductor simulation), here computed with
- % intermediate steps printed
- alpha := 38.683;
- ni := 1.22e10;
- v := 100;
- d := 1e17;
- sys := { e**(alpha*(x3-x1)) - e**(alpha*(x1-x2)) - d/ni,
- x2,
- x3,
- e**(alpha*(x6-x4)) - e**(alpha*(x4-x5)) + d/ni,
- x5 - v,
- x6 - v};
- on trnumeric;
- num_solve(sys,x1=1,x2=2,x3=3,x4=4,x5=5,x6=6,iterations=100);
- off trnumeric;
- clear alpha,ni,v,d,sys;
- off rounded;
- % INTEGRALS
-
- num_int( x**2,x=(1 .. 2),accuracy=3);
- % 1st case: using formal integral
- needle := 1/(10**-4 + x**2);
- num_int(needle,x=(-1 .. 1),accuracy=3); % 312.16
- % no formal integral, but easy Chebyshev fit
- num_int(sin x/x,x=(1 .. 10));
- % using a Chebyshev fit of order 60
- num_int(exp(-x**2),x=(-10 .. 10),accuracy=3); % 1.772
- % cases with singularities
- num_int(1/sqrt x ,x=(0 .. 1),accuracy=2); % 1.999
- num_int(1/sqrt abs x ,x=(-1 .. 1),iterations=50); % 3.999
- % simple multidimensional integrals
- num_int(x+y,x=(0 .. 1),y=(2 .. 3));
- num_int(sin(x+y),x=(0 .. 1),y=(0 .. 1));
- % some integrals with infinite bounds
-
- on rounded; % for the error function
- num_int(e^(-x) ,x=(0 .. infinity)); % 1.000
- 2/sqrt(pi)* num_int(e^(-x^2) ,x=(0 .. infinity)); % 1.00
- 2/sqrt(pi)* num_int(e^(-x^2), x=(-infinity .. infinity)); % 2.00
- num_int(sin(x) * e^(-x), x=(0 .. infinity)); % 0.500
-
- off rounded;
-
- % APPROXIMATION
-
- %approximate sin x by a cubic polynomial
- num_fit(sin x,{1,x,x**2,x**3},x=for i:=0:20 collect 0.1*i);
-
- % approximate x**2 by a harmonic series in the interval [0,1]
- num_fit(x**2,1 . for i:=1:5 join {sin(i*x)},
- x=for i:=0:10 collect i/10);
-
- % approximate a set of points by a polynomial
- pts:=for i:=1 step 0.1 until 3 collect i$
- vals:=for each p in pts collect (p+2)**3$
- num_fit(vals,{1,x,x**2,x**3},x=pts);
- % compute the approximation error
- on rounded;
- first ws - (x+2)**3;
- off rounded;
-
- % ODE SOLUTION (Runge-Kutta)
-
- depend(y,x);
- % approximate y=y(x) with df(y,x)=2y in interval [0 : 5]
- num_odesolve(df(y,x)=y,y=2,x=(0 .. 5),iterations=20);
-
- % same with negative direction
- num_odesolve(df(y,x)=y,y=2,x=(0 .. -5),iterations=20);
- % giving a nice picture when plotted
- num_odesolve(df(y,x)=1- x*y**2 ,y=0,x=(0 .. 4),iterations=20);
- % system of ordinary differential equations
- depend(y,x);
- depend(z,x);
- num_odesolve(
- {df(z,x) = y, df(y,x)= y+x},
- {z=2, y=4},
- x=(0 .. 5),iterations=20);
- %----------------- Chebyshev fit -------------------------
- on rounded;
- func := x**2 * (x**2 - 2) * sin x;
- ord := 15;
- cx:=chebyshev_fit(func,x=(0 .. 2),ord)$
- cp:=first cx;
- cc:=second cx;
- for u:=0 step 0.2 until 2 do write
- "x:",u," true value:",sub(x=u,func),
- " Chebyshev eval:", chebyshev_eval(cc,x=(0 .. 2),x=u),
- " Chebyshev polynomial:",sub(x=u,cp);
- % integral
- % integrate coefficients
- ci := chebyshev_int(cc,x=(0 .. 2));
- % compare with true values (normalized absolute term)
- ci0:=chebyshev_eval(ci,x=(0 .. 2),x=0)$
- ifunc := int(func,x)$ if0 := sub(x=0,ifunc);
- for u:=0 step 0.2 until 2 do write
- {u,sub(x=u,ifunc) - if0,
- chebyshev_eval(ci,x=(0 .. 2),x=u) - ci0};
- % derivative
- % differentiate coefficients
- cd := chebyshev_df(cc,x=(0 .. 2))$
- % compute coefficients of derivative
- cds := second chebyshev_fit(df(func,x),x=(0 .. 2),ord)$
- % compare coefficients
- for i:=1:ord do write {part(cd,i),part(cds,i)};
- clear func,ord,cc,cx,cd,cds,ci,ci0;
- off rounded;
- end;
|