123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- if lisp !*rounded then rounded_was_on := t
- else rounded_was_on := nil;
- mat1 := mat((1,2,3,4,5),(2,3,4,5,6),(3,4,5,6,7),(4,5,6,7,8),(5,6,7,8,9));
- mat2 := mat((1,1,1,1),(2,2,2,2),(3,3,3,3),(4,4,4,4));
- mat3 := mat((x),(x),(x),(x));
- mat4 := mat((3,3),(4,4),(5,5),(6,6));
- mat5 := mat((1,2,1,1),(1,2,3,1),(4,5,1,2),(3,4,5,6));
- mat6 := mat((i+1,i+2,i+3),(4,5,2),(1,i,0));
- mat7 := mat((1,1,0),(1,3,1),(0,1,1));
- mat8 := mat((1,3),(-4,3));
- mat9 := mat((1,2,3,4),(9,8,7,6));
- poly := x^7+x^5+4*x^4+5*x^3+12;
- poly1 := x^2+x*y^3+x*y*z^3+y*x+2+y*3;
- on errcont;
- % Basis matrix manipulations.
- add_columns(mat1,1,2,5*y);
- add_rows(mat1,1,2,x);
- add_to_columns(mat1,3,1000);
- add_to_columns(mat1,{1,2,3},y);
- add_to_rows(mat1,2,1000);
- add_to_rows(mat1,{1,2,3},x);
- augment_columns(mat1,2);
- augment_columns(mat1,{1,2,5});
- stack_rows(mat1,3);
- stack_rows(mat1,{1,3,5});
- char_poly(mat1,x);
- column_dim(mat2);
- row_dim(mat1);
- copy_into(mat7,mat1,2,3);
- copy_into(mat7,mat1,5,5);
- diagonal(3);
- % diagonal can take both a list of arguments or just the arguments.
- diagonal({mat2,mat6});
- diagonal(mat1,mat2,mat5);
- extend(mat1,3,2,x);
- find_companion(mat5,x);
- get_columns(mat1,1);
- get_columns(mat1,{1,2});
- get_rows(mat1,3);
- get_rows(mat1,{1,3});
- hermitian_tp(mat6);
- % matrix_augment and matrix_stack can take both a list of arguments
- % or just the arguments.
- matrix_augment({mat1,mat2});
- matrix_augment(mat4,mat2,mat4);
- matrix_stack(mat1,mat2);
- matrix_stack({mat6,mat((z,z,z)),mat7});
- minor(mat1,2,3);
- mult_columns(mat1,3,y);
- mult_columns(mat1,{2,3,4},100);
- mult_rows(mat1,2,x);
- mult_rows(mat1,{1,3,5},10);
- pivot(mat1,3,3);
- rows_pivot(mat1,3,3,{1,5});
- remove_columns(mat1,3);
- remove_columns(mat1,{2,3,4});
- remove_rows(mat1,2);
- remove_rows(mat1,{1,3});
- remove_rows(mat1,{1,2,3,4,5});
- swap_columns(mat1,2,4);
- swap_rows(mat1,1,2);
- swap_entries(mat1,{1,1},{5,5});
- % Constructors - functions that create matrices.
- band_matrix(x,5);
- band_matrix({x,y,z},6);
- block_matrix(1,2,{mat1,mat2});
- block_matrix(2,3,{mat2,mat3,mat2,mat3,mat2,mat2});
- char_matrix(mat1,x);
- cfmat := coeff_matrix({x+y+4*z=10,y+x-z=20,x+y+4});
- first cfmat * second cfmat;
- third cfmat;
- companion(poly,x);
- hessian(poly1,{w,x,y,z});
- hilbert(4,1);
- hilbert(3,y+x);
- jacobian({x^4,x*y^2,x*y*z^3},{w,x,y,z});
- jordan_block(x,5);
- make_identity(11);
- on rounded; % makes things a bit easier to read.
- random_matrix(3,3,100);
- on not_negative;
- random_matrix(3,3,100);
- on only_integer;
- random_matrix(3,3,100);
- on symmetric;
- random_matrix(3,3,100);
- off symmetric;
- on upper_matrix;
- random_matrix(3,3,100);
- off upper_matrix;
- on lower_matrix;
- random_matrix(3,3,100);
- off lower_matrix;
- on imaginary;
- off not_negative;
- random_matrix(3,3,100);
- off rounded;
- % toeplitz and vandermonde can take both a list of arguments or just
- % the arguments.
- toeplitz({1,2,3,4,5});
- toeplitz(x,y,z);
- vandermonde({1,2,3,4,5});
- vandermonde(x,y,z);
- % kronecker_product
- a1 := mat((1,2),(3,4),(5,6));
- a2 := mat((1,x,1),(2,2,2),(3,3,3));
- kronecker_product(a1,a2);
- clear a1,a2;
- % High level algorithms.
- on rounded; % makes output easier to read.
- ch := cholesky(mat7);
- tp first ch - second ch;
- tmp := first ch * second ch;
- tmp - mat7;
- off rounded;
- gram_schmidt({1,0,0},{1,1,0},{1,1,1});
- gram_schmidt({1,2},{3,4});
- on rounded; % again, makes large quotients a bit more readable.
- % The algorithm used for lu_decom sometimes swaps the rows of the input
- % matrix so that (given matrix A, lu_decom(A) = {L,U,vec}), we find L*U
- % does not equal A but a row equivalent of it. The call convert(A,vec)
- % will return this row equivalent (ie: L*U = convert(A,vec)).
- lu := lu_decom(mat5);
- mat5;
- tmp := first lu * second lu;
- tmp1 := convert(mat5,third lu);
- tmp - tmp1;
- % and the complex case...
- lu1 := lu_decom(mat6);
- mat6;
- tmp := first lu1 * second lu1;
- tmp1 := convert(mat6,third lu1);
- tmp - tmp1;
- mat9inv := pseudo_inverse(mat9);
- mat9 * mat9inv;
- simplex(min,2*x1+14*x2+36*x3,{-2*x1+x2+4*x3>=5,-x1-2*x2-3*x3<=2});
- simplex(max,10000 x1 + 1000 x2 + 100 x3 + 10 x4 + x5,{ x1 <= 1, 20 x1 +
- x2 <= 100, 200 x1 + 20 x2 + x3 <= 10000, 2000 x1 + 200 x2 + 20 x3 + x4
- <= 1000000, 20000 x1 + 2000 x2 + 200 x3 + 20 x4 + x5 <= 100000000});
- simplex(max, 5 x1 + 4 x2 + 3 x3,
- { 2 x1 + 3 x2 + x3 <= 5,
- 4 x1 + x2 + 2 x3 <= 11,
- 3 x1 + 4 x2 + 2 x3 <= 8 });
- simplex(min,3 x1 + 5 x2,{ x1 + 2 x2 >= 2, 22 x1 + x2 >= 3});
- simplex(max,10x+5y+5.5z,{5x+3z<=200,0.2x+0.1y+0.5z<=12,0.1x+0.2y+0.3z<=9,
- 30x+10y+50z<=1500});
- %example of extra variables (>=0) being added.
- simplex(min,x-y,{x>=-3});
- % unfeasible as simplex algorithm implies all x>=0.
- simplex(min,x,{x<=-100});
- % three error examples.
- simplex(maxx,x,{x>=5});
- simplex(max,x,x>=5);
- simplex(max,x,{x<=y});
- simplex(max, 346 X11 + 346 X12 + 248 X21 + 248 X22 + 399 X31 + 399 X32 +
- 200 Y11 + 200 Y12 + 75 Y21 + 75 Y22 + 2.35 Z1 + 3.5 Z2,
- {
- 4 X11 + 4 X12 + 2 X21 + 2 X22 + X31 + X32 + 250 Y11 + 250 Y12 + 125 Y21 +
- 125 Y22 <= 25000,
- X11 + X12 + X21 + X22 + X31 + X32 + 2 Y11 + 2 Y12 + Y21 + Y22 <= 300,
- 20 X11 + 15 X12 + 30 Y11 + 20 Y21 + Z1 <= 1500,
- 40 X12 + 35 X22 + 50 X32 + 15 Y12 + 10 Y22 + Z2 = 5000,
- X31 = 0,
- Y11 + Y12 <= 50,
- Y21 + Y22 <= 100
- });
- % from Marc van Dongen. Finding the first feasible solution for the
- % solution of systems of linear diophantine inequalities.
- simplex(max,0,{
- 3*X259+4*X261+3*X262+2*X263+X269+2*X270+3*X271+4*X272+5*X273+X229=2,
- 7*X259+11*X261+8*X262+5*X263+3*X269+6*X270+9*X271+12*X272+15*X273+X229=4,
- 2*X259+5*X261+4*X262+3*X263+3*X268+4*X269+5*X270+6*X271+7*X272+8*X273=1,
- X262+2*X263+5*X268+4*X269+3*X270+2*X271+X272+2*X229=1,
- X259+X262+2*X263+4*X268+3*X269+2*X270+X271-X273+3*X229=2,
- X259+2*X261+2*X262+2*X263+3*X268+3*X269+3*X270+3*X271+3*X272+3*X273+X229=1,
- X259+X261+X262+X263+X268+X269+X270+X271+X272+X273+X229=1});
- svd_ans := svd(mat8);
- tmp := tp first svd_ans * second svd_ans * third svd_ans;
- tmp - mat8;
- mat9inv := pseudo_inverse(mat9);
- mat9 * mat9inv;
- % Predicates.
- matrixp(mat1);
- matrixp(poly);
- squarep(mat2);
- squarep(mat3);
- symmetricp(mat1);
- symmetricp(mat3);
- if not rounded_was_on then off rounded;
- END;
|