123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- % Examples of use of Groebner code.
- % In the Examples 1 - 3 the polynomial ring for the ideal operations
- % (variable sequence, term order mode) is defined globally in advance.
- % Example 1, Linz 85.
- torder ({q1,q2,q3,q4,q5,q6},lex)$
- groebner {q1,
- q2**2 + q3**2 + q4**2,
- q4*q3*q2,
- q3**2*q2**2 + q4**2*q2**2 + q4**2*q3**2,
- q6**2 + 1/3*q5**2,
- q6**3 - q5**2*q6,
- 2*q2**2*q6 - q3**2*q6 - q4**2*q6 + q3**2*q5 - q4**2*q5,
- 2*q2**2*q6**2 - q3**2*q6**2 - q4**2*q6**2 - 2*q3**2*q5*q6
- + 2*q4**2*q5*q6 - 2/3*q2**2*q5**2 + 1/3*q3**2*q5**2
- + 1/3*q4**2*q5**2,
- - q3**2*q2**2*q6 - q4**2*q2**2*q6 + 2*q4**2*q3**2*q6 -
- q3**2*q2**2*q5 + q4**2*q2**2*q5,
- - q3**2*q2**2*q6**2 - q4**2*q2**2*q6**2 + 2*q4**2*q3**2*q6**2
- + 2*q3**2*q2**2*q5*q6 - 2*q4**2*q2**2*q5*q6 + 1/3*q3**2*q2**2
- *q5**2 + 1/3*q4**2*q2**2*q5**2 - 2/3*q4**2*q3**2*q5**2,
- - 3*q3**2*q2**4*q5*q6**2 + 3*q4**2*q2**4*q5*q6**2
- + 3*q3**4*q2**2*q5*q6**2 - 3*q4**4*q2**2*q5*q6**2
- - 3*q4**2*q3**4*q5*q6**2 + 3*q4**4*q3**2*q5*q6**2
- + 1/3*q3**2*q2**4*q5**3 - 1/3*q4**2*q2**4*q5**3
- - 1/3*q3**4*q2**2*q5**3 + 1/3*q4**4*q2**2*q5**3 + 1/3*q4**2
- *q3**4*q5**3 - 1/3*q4**4*q3**2*q5**3};
- % Example 2. (Little) Trinks problem with 7 polynomials in 6 variables.
- trinkspolys := {45*p + 35*s - 165*b - 36,
- 35*p + 40*z + 25*t - 27*s,
- 15*w + 25*p*s + 30*z - 18*t - 165*b**2,
- - 9*w + 15*p*t + 20*z*s,
- w*p + 2*z*t - 11*b**3,
- 99*w - 11*s*b + 3*b**2,
- b**2 + 33/50*b + 2673/10000}$
- trinksvars := {w,p,z,t,s,b}$
- torder(trinksvars,lex)$
- groebner trinkspolys;
- groesolve ws;
-
- % Example 3. Hairer, Runge-Kutta 1, 6 polynomials 8 variables.
-
- torder({c2,c3,b3,b2,b1,a21,a32,a31},lex);
- groebnerf {c2 - a21,
-
- c3 - a31 - a32,
-
- b1 + b2 + b3 - 1,
-
- b2*c2 + b3*c3 - 1/2,
-
- b2*c2**2 + b3*c3**2 - 1/3,
-
- b3*a32*c2 - 1/6};
-
-
-
- % The examples 4 and 5 use automatic variable extraction.
- % Example 4.
-
- torder gradlex$
-
- g4 :=
- groebner({b + e + f - 1,
-
- c + d + 2*e - 3,
-
- b + d + 2*f - 1,
-
- a - b - c - d - e - f,
-
- d*e*a**2 - 1569/31250*b*c**3,
-
- c*f - 587/15625*b*d});
-
- hilbertpolynomial g4;
- glexconvert(g4,gvarslast,newvars={e},maxdeg=8);
- % Example 5.
-
- torder({u0,u2,u3,u1},lex)$
- groesolve({u0**2 - u0 + 2*u1**2 + 2*u2**2 + 2*u3**2,
-
- 2*u0*u1 + 2*u1*u2 + 2*u2*u3 - u1,
-
- 2*u0*u2 + u1**2 + 2*u1*u3 - u2,
-
- u0 + 2*u1 + 2*u2 + 2*u3 - 1},
- {u0,u2,u3,u1});
-
-
- % Example 6. (Big) Trinks problem with 6 polynomials in 6 variables.
-
- torder(trinksvars,lex)$
-
- btbas :=
- groebner {45*p + 35*s - 165*b - 36,
-
- 35*p + 40*z + 25*t - 27*s,
-
- 15*w + 25*p*s + 30*z - 18*t - 165*b**2,
-
- -9*w + 15*p*t + 20*z*s,
-
- w*p + 2*z*t - 11*b**3,
-
- 99*w - 11*b*s + 3*b**2};
-
- % The above system has dimension zero. Therefore its Hilbert polynomial
- % is a constant which is the number of zero points (including complex
- % zeros and multipliticities);
- hilbertpolynomial ws;
-
- % Example of Groebner with numerical postprocessing.
- on rounded;
- groesolve(trinkspolys,trinksvars);
- off rounded;
- % Additional groebner operators.
- % Reduce one polynomial wrt the basis of big Trinks. The result 0
- % is a proof for the ideal membership of the polynomial.
- torder(trinksvars,lex)$
- preduce(45*p + 35*s - 165*b - 36,btbas);
-
- % The following examples show how to work with the distributive
- % form of polynomials.
- torder({u0,u1,u2,u3},gradlex)$
- gsplit(2*u0*u2 + u1**2 + 2*u1*u3 - u2,{u0,u1,u2,u3});
- torder(trinksvars,lex)$
- gsort trinkspolys;
-
- gspoly(first trinkspolys, second trinkspolys);
- gvars trinkspolys;
- % Tagged basis and reduction trace. A tagged basis is a basis where
- % each polynomial is equated to a linear combination of the input
- % set. A tagged reduction shows how the result is computed by using
- % the basis polynomials.
- % First example for tagged polynomials: show how a polynomial is
- % represented as linear combination of the basis polynomials.
- % First I set up an environment for the computation.
- torder(trinksvars,lex)$
- % Then I compute an ordinary Groebner basis.
- bas := groebner trinkspolys$
- % Next I assign a tag to each basis polynomial.
- taggedbas := for i:= 1:length bas collect
- mkid(p,i) = part(bas,i);
- % And finally I reduce a (tagged) polynomial wrt the tagged basis.
- preducet(new=w*p + 2*z*t - 11*b**3,taggedbas);
- % Second example for tagged polynomials: representing a Groebner basis
- % as a combination of the input polynomials, here in a simple geometric
- % problem.
- torder({x,y},lex)$
- groebnert {circle=x**2 + y**2 - r**2,line = a*x + b*y};
- % In the third example I enter two polynomials that have no common zero.
- % Consequently the basis is {1}. The tagged computation gives me a proof
- % for the inconsistency of the system which is independent of the
- % Groebner formalism.
- groebnert {circle1=x**2 + y**2 - 10,circle2=x**2 + y**2 - 2};
- % Solve a special elimination task by using a blockwise elimination
- % order defined by a matrix. The equation set goes back to A.M.H.
- % Levelt (Nijmegen). The question is whether there is a member in the
- % ideal which depends only on two variables. Here we select x4 and y1.
- % The existence of such a polynomial proves that the system has exactly
- % one degree of freedom.
- % The first two rows of the term order matrix define the groupwise
- % elimination. The remaining lines define a secondary local
- % lexicographical behavior which is needed to construct an admissible
- % ordering.
- f1 := y1^2 + z1^2 -1;
- f2 := x2^2 + y2^2 + z2^2 -1;
- f3 := x3^2 + y3^2 + z3^2 -1;
- f4 := x4^2 + z4^2 -1;
- f5 := y1*y2 + z1*z2;
- f6 := x2*x3 + y2*y3 + z2*z3;
- f7 := x3*x4 + z3*z4;
- f8 := x2 + x3 + x4 + 1;
- f9 := y1 + y2 + y3 - 1;
- f10:= z1 + z2 + z3 + z4;
- eqns := {f1,f2,f3,f4,f5,f6,f7,f8,f9,f10}$
- vars := {x2,x3,y2,y3,z1,z2,z3,z4,x4,y1}$
- torder(vars,matrix,
- mat(
- (1,1,1,1,1,1,1,1,0,0),
- (0,0,0,0,0,0,0,0,1,1),
- (1,0,0,0,0,0,0,0,0,0),
- (0,1,0,0,0,0,0,0,0,0),
- (0,0,1,0,0,0,0,0,0,0),
- (0,0,0,1,0,0,0,0,0,0),
- (0,0,0,0,1,0,0,0,0,0),
- (0,0,0,0,0,1,0,0,0,0),
- (0,0,0,0,0,0,1,0,0,0),
- (0,0,0,0,0,0,0,0,1,0)));
- first reverse groebner(eqns,vars);
- % For a faster execution we convert the matrix into a
- % proper machine code routine. This step can be taken only
- % if there is access to a compiler.
- on comp;
- torder_compile(levelt,mat(
- (1,1,1,1,1,1,1,1,0,0),
- (0,0,0,0,0,0,0,0,1,1),
- (1,0,0,0,0,0,0,0,0,0),
- (0,1,0,0,0,0,0,0,0,0),
- (0,0,1,0,0,0,0,0,0,0),
- (0,0,0,1,0,0,0,0,0,0),
- (0,0,0,0,1,0,0,0,0,0),
- (0,0,0,0,0,1,0,0,0,0),
- (0,0,0,0,0,0,1,0,0,0),
- (0,0,0,0,0,0,0,0,1,0)));
- torder(vars,levelt)$
- first reverse groebner(eqns,vars);
- % For a homogeneous polynomial set we compute a graded Groebner
- % basis with grade limits. We use the graded term order with lex
- % as following order. As the grade vector has no zeros, this ordering
- % is functionally equivalent to a weighted ordering.
- torder({x,y,z},graded,{1,1,2},lex);
- dd_groebner(0,10,{x^10*y + y*z^5, x*y^12 + y*z^6});
- dd_groebner(0,50,{x^10*y + y*z^5, x*y^12 + y*z^6});
- dd_groebner(0,infinity,{x^10*y + y*z^5, x*y^12 + y*z^6});
- end;
|