GCD.TST 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226
  1. COMMENT Greatest Common Divisor Test Suite;
  2. % The following examples were introduced in Moses, J. and Yun, D.Y.Y.,
  3. % "The EZ GCD Algorithm", Proc. ACM 73 (1973) 159-166, and considered
  4. % further in Hearn, A.C., "Non-modular Computation of Polynomial GCD's
  5. % Using Trial Division", Proc. EUROSAM 79, 227-239, 72, published as
  6. % Lecture Notes on Comp. Science, # 72, Springer-Verlag, Berlin, 1979.
  7. on gcd;
  8. % The following is the best setting for this file.
  9. on ezgcd;
  10. % In systems that have the heugcd code, the following is also a
  11. % possibility, although not all examples complete in a reasonable time.
  12. % load heugcd; on heugcd;
  13. % The final alternative is to use neither ezgcd nor heugcd. In that case,
  14. % most examples take excessive amounts of computer time.
  15. share n;
  16. operator xx;
  17. % Case 1.
  18. for n := 2:5
  19. do write gcd(((for i:=1:n sum xx(i))-1)*((for i:=1:n sum xx(i)) + 2),
  20. ((for i:=1:n sum xx(i))+1)
  21. *(-3xx(2)*xx(1)**2+xx(2)**2-1)**2);
  22. % Case 2.
  23. let d = (for i:=1:n sum xx(i)**n) + 1;
  24. for n := 2:7 do write gcd(d*((for i:=1:n sum xx(i)**n) - 2),
  25. d*((for i:=1:n sum xx(i)**n) + 2));
  26. for n := 2:7 do write gcd(d*((for i:=1:n sum xx(i)**n) - 2),
  27. d*((for i:=1:n sum xx(i)**(n-1)) + 2));
  28. % Case 3.
  29. let d = xx(2)**2*xx(1)**2 + (for i := 3:n sum xx(i)**2) + 1;
  30. for n := 2:5
  31. do write gcd(d*(xx(2)*xx(1) + (for i:=3:n sum xx(i)) + 2)**2,
  32. d*(xx(1)**2-xx(2)**2 + (for i:=3:n sum xx(i)**2) - 1));
  33. % Case 4.
  34. let u = xx(1) - xx(2)*xx(3) + 1,
  35. v = xx(1) - xx(2) + 3xx(3);
  36. gcd(u*v**2,v*u**2);
  37. gcd(u*v**3,v*u**3);
  38. gcd(u*v**4,v*u**4);
  39. gcd(u**2*v**4,v**2*u**4);
  40. % Case 5.
  41. let d = (for i := 1:n product (xx(i)+1)) - 3;
  42. for n := 2:5 do write gcd(d*for i := 1:n product (xx(i) - 2),
  43. d*for i := 1:n product (xx(i) + 2));
  44. clear d,u,v;
  45. % The following examples were discussed in Char, B.W., Geddes, K.O.,
  46. % Gonnet, G.H., "GCDHEU: Heuristic Polynomial GCD Algorithm Based
  47. % on Integer GCD Computation", Proc. EUROSAM 84, 285-296, published as
  48. % Lecture Notes on Comp. Science, # 174, Springer-Verlag, Berlin, 1984.
  49. % Maple Problem 1.
  50. gcd(34*x**80-91*x**99+70*x**31-25*x**52+20*x**76-86*x**44-17*x**33
  51. -6*x**89-56*x**54-17,
  52. 91*x**49+64*x**10-21*x**52-88*x**74-38*x**76-46*x**84-16*x**95
  53. -81*x**72+96*x**25-20);
  54. % Maple Problem 2.
  55. g := 34*x**19-91*x+70*x**7-25*x**16+20*x**3-86;
  56. gcd(g * (64*x**34-21*x**47-126*x**8-46*x**5-16*x**60-81),
  57. g * (72*x**60-25*x**25-19*x**23-22*x**39-83*x**52+54*x**10+81) );
  58. % Maple Problem 3.
  59. gcd(3427088418+8032938293*x-9181159474*x**2-9955210536*x**3
  60. +7049846077*x**4-3120124818*x**5-2517523455*x**6+5255435973*x**7
  61. +2020369281*x**8-7604863368*x**9-8685841867*x**10+4432745169*x**11
  62. -1746773680*x**12-3351440965*x**13-580100705*x**14+8923168914*x**15
  63. -5660404998*x**16 +5441358149*x**17-1741572352*x**18
  64. +9148191435*x**19-4940173788*x**20+6420433154*x**21+980100567*x**22
  65. -2128455689*x**23+5266911072*x**24-8800333073*x**25-7425750422*x**26
  66. -3801290114*x**27-7680051202*x**28-4652194273*x**29-8472655390*x**30
  67. -1656540766*x**31+9577718075*x**32-8137446394*x**33+7232922578*x**34
  68. +9601468396*x**35-2497427781*x**36-2047603127*x**37-1893414455*x**38
  69. -2508354375*x**39-2231932228*x**40,
  70. 2503247071-8324774912*x+6797341645*x**2+5418887080*x**3
  71. -6779305784*x**4+8113537696*x**5+2229288956*x**6+2732713505*x**7
  72. +9659962054*x**8-1514449131*x**9+7981583323*x**10+3729868918*x**11
  73. -2849544385*x**12-5246360984*x**13+2570821160*x**14-5533328063*x**15
  74. -274185102*x**16+8312755945*x**17-2941669352*x**18-4320254985*x**19
  75. +9331460166*x**20-2906491973*x**21-7780292310*x**22-4971715970*x**23
  76. -6474871482*x**24-6832431522*x**25-5016229128*x**26-6422216875*x**27
  77. -471583252*x**28+3073673916*x**29+2297139923*x**30+9034797416*x**31
  78. +6247010865*x**32+5965858387*x**33-4612062748*x**34+5837579849*x**35
  79. -2820832810*x**36-7450648226*x**37+2849150856*x**38+2109912954*x**39
  80. +2914906138*x**40);
  81. % Maple Problem 4.
  82. g := 34271+80330*x-91812*x**2-99553*x**3+70499*x**4-31201*x**5
  83. -25175*x**6+52555*x**7+20204*x**8-76049*x**9-86859*x**10;
  84. gcd(g * (44328-17468*x-33515*x**2-5801*x**3+89232*x**4-56604*x**5
  85. +54414*x**6-17416*x**7+91482*x**8-49402*x**9+64205*x**10
  86. +9801*x**11-21285*x**12+52669*x**13-88004*x**14-74258*x**15
  87. -38013*x**16-76801*x**17-46522*x**18-84727*x**19-16565*x**20
  88. +95778*x**21-81375*x**22+72330*x**23+96015*x**24-24974*x**25
  89. -20476*x**26-18934*x**27-25084*x**28-22319*x**29+25033*x**30),
  90. g * (-83248+67974*x+54189*x**2-67793*x**3+81136*x**4+22293*x**5
  91. +27327*x**6+96600*x**7-15145*x**8+79816*x**9+37299*x**10
  92. -28496*x**11-52464*x**12+25708*x**13-55334*x**14-2742*x**15
  93. +83128*x**16-29417*x**17-43203*x**18+93315*x**19-29065*x**20
  94. -77803*x**21-49717*x**22-64749*x**23-68325*x**24-50163*x**25
  95. -64222*x**26-4716*x**27+30737*x**28+22972*x**29+90348*x**30));
  96. % Maple Problem 5.
  97. gcd(-8472*x**4*y**10-8137*x**9*y**10-2497*x**4*y**4-2508*x**4*y**6
  98. -8324*x**9*y**8-6779*x**9*y**6+2733*x**10*y**4+7981*x**7*y**3
  99. -5246*x**6*y**2-274*x**10*y**3-4320,
  100. 15168*x**3*y-4971*x*y-2283*x*y**5+3074*x**6*y**10+6247*x**8*y**2
  101. +2849*x**6*y**7-2039*x**7-2626*x**2*y**7+9229*x**6*y**5+2404*y**5
  102. +1387*x**4*y**8+5602*x**5*y**2-6212*x**3*y**7-8561);
  103. % Maple Problem 6.
  104. g := -19*x**4*y**4+25*y**9+54*x*y**9+22*x**7*y**10-15*x**9*y**7-28;
  105. gcd(g*(91*x**2*y**9+10*x**4*y**8-88*x*y**3-76*x**2-16*x**10*y
  106. +72*x**10*y**4-20),
  107. g*(34*x**9-99*x**9*y**3-25*x**8*y**6-76*y**7-17*x**3*y**5
  108. +89*x**2*y**8-17));
  109. % Maple Problem 7.
  110. gcd(6713544209*x**9+8524923038*x**3*y**3*z**7+6010184640*x*z**7
  111. +4126613160*x**3*y**4*z**9+2169797500*x**7*y**4*z**9
  112. +2529913106*x**8*y**5*z**3+7633455535*y*z**3+1159974399*x**2*z**4
  113. +9788859037*y**8*z**9+3751286109*x**3*y**4*z**3,
  114. 3884033886*x**6*z**8+7709443539*x*y**9*z**6
  115. +6366356752*x**9*y**4*z**8+6864934459*x**3*y**2*z**6
  116. +2233335968*x**4*y**9*z**3+2839872507*x**9*y**3*z
  117. +2514142015*x*y*z**2+1788891562*x**4*y**6*z**6
  118. +9517398707*x**8*y**7*z**2+7918789924*x**3*y*z**6
  119. +6054956477*x**6*y**3*z**6);
  120. % Maple Problem 8.
  121. g := u**3*(x**2-y)*z**2+(u-3*u**2*x)*y*z-u**4*x*y+3;
  122. gcd(g * ((y**2+x)*z**2+u**5*(x*y+x**2)*z-y+5),
  123. g * ((y**2-x)*z**2+u**5*(x*y-x**2)*z+y+9) );
  124. % Maple Problem 9.
  125. g := 34*u**2*y**2*z-25*u**2*v*z**2-18*v*x**2*z**2-18*u**2*x**2*y*z+53
  126. +x**3;
  127. gcd( g * (-85*u*v**2*y**2*z**2-25*u*v*x*y*z-84*u**2*v**2*y**2*z
  128. +27*u**2*v*x**2*y**2*z-53*u*x*y**2*z+34*x**3),
  129. g * (48*x**3-99*u*x**2*y**2*z-69*x*y*z-75*u*v*x*y*z**2
  130. -43*u**2*v+91*u**2*v**2*y**2*z) );
  131. % Maple Problem 10.
  132. gcd(-9955*v**9*x**3*y**4*z**8+2020*v*y**7*z**4
  133. -3351*v**5*x**10*y**2*z**8-1741*v**10*x**2*y**9*z**6
  134. -2128*v**8*y*z**3-7680*v**2*y**4*z**10-8137*v**9*x**10*y**4*z**4
  135. -1893*v**4*x**4*y**6+6797*v**8*x*y**9*z**6
  136. +2733*v**10*x**4*y**9*z**7-2849*v**2*x**6*y**2*z**5
  137. +8312*v**3*x**3*y**10*z**3-7780*v**2*x*y*z**2
  138. -6422*v**5*x**7*y**6*z**10+6247*v**8*x**2*y**8*z**3
  139. -7450*v**7*x**6*y**7*z**4+3625*x**4*y**2*z**7+9229*v**6*x**5*y**6
  140. -112*v**6*x**4*y**8*z**7-7867*v**5*x**8*y**5*z**2
  141. -6212*v**3*x**7*z**5+8699*v**8*x**2*y**2*z**5
  142. +4442*v**10*x**5*y**4*z+1965*v**10*y**3*z**3-8906*v**6*x*y**4*z**5
  143. +5552*x**10*y**4+3055*v**5*x**3*y**6*z**2+6658*v**7*x**10*z**6
  144. +3721*v**8*x**9*y**4*z**8+9511*v*x**6*y+5437*v**3*x**9*y**9*z**7
  145. -1957*v**6*x**4*y*z**3+9214*v**3*x**9*y**3*z**7
  146. +7273*v**2*x**8*y**4*z**10+1701*x**10*y**7*z**2
  147. +4944*v**5*x**5*y**8*z**8-1935*v**3*x**6*y**10*z**7
  148. +4029*x**6*y**10*z**3+9462*v**6*x**5*y**4*z**8-3633*v**4*x*y**7*z**5
  149. -1876,
  150. -5830*v**7*x**8*y*z**2-1217*v**8*x*y**2*z**5
  151. -1510*v**9*x**3*y**10*z**10+7036*v**6*x**8*y**3*z**3
  152. +1022*v**9*y**3*z**8+3791*v**8*x**3*y**7+6906*v**6*x*y*z**10
  153. +117*v**7*x**2*y**4*z**4+6654*v**6*x**5*y**2*z**3
  154. -7302*v**10*x**8*y**3-5343*v**8*x**5*y**9*z
  155. -2244*v**9*x**3*y**8*z**9-3719*v**5*x**10*y**6*z**8
  156. +2629*x**3*y**2*z**10+8517*x**9*y**6*z**7-9551*v**5*x**6*y**6*z**2
  157. -7750*x**10*y**7*z**4-5035*v**5*x**2*y**5*z-5967*v**9*x**5*y**9*z**5
  158. -8517*v**3*x**2*y**7*z**6-2668*v**10*y**9*z**4+1630*v**5*x**5*y*z**8
  159. +9099*v**7*x**9*y**4*z**3-5358*v**9*x**5*y**6*z**2
  160. +5766*v**5*y**3*z**4-3624*v*x**4*y**10*z**10
  161. +8839*v**6*x**9*y**10*z**4+3378*x**7*y**2*z**5+7582*v**7*x*y**8*z**7
  162. -85*v*x**2*y**9*z**6-9495*v**9*x**10*y**6*z**3+1983*v**9*x**3*y
  163. -4613*v**10*x**4*y**7*z**6+5529*v**10*x*y**6
  164. +5030*v**4*x**5*y**4*z**9-9202*x**6*y**3*z**9
  165. -4988*v**2*x**2*y**10*z**4-8572*v**9*x**7*y**10*z**10
  166. +4080*v**4*x**8*z**8-382*v**9*x**9*y**2*z**2-7326);
  167. end;