123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743 |
- % Author H.-G. Graebe | Univ. Leipzig | Version 28.6.1995
- % graebe@informatik.uni-leipzig.de
- COMMENT
- This is an example session demonstrating and testing the facilities
- offered by the commutative algebra package CALI.
- END COMMENT;
- algebraic;
- on echo;
- off nat; % To make it easier to compare differing output.
- showtime;
- comment
- ####################################
- ### ###
- ### Introductory Examples ###
- ### ###
- ####################################
- end comment;
- % Example 1 : Generating ideals of affine and projective points.
- vars:={t,x,y,z};
- setring(vars,degreeorder vars,revlex);
- mm:=mat((1,1,1,1),(3,2,3,1),(2,1,3,2));
- % The ideal with zero set at the point in A^4 with coordinates
- % equal to the row vectors of mm :
- setideal(m1,affine_points mm);
- % All parameters are as they should be :
- dim m1;
- degree m1;
- groebfactor m1;
- resolve m1$
- bettinumbers m1;
- % The ideal with zero set at the point in P^3 with homogeneous
- % coordinates equal to the row vectors of mm :
- setideal(m2,proj_points mm);
- % All parameters as they should be ?
- dim m2;
- degree m2;
- groebfactor m2;
- % It seems to be prime ?
- isprime m2;
- % Not, of course, but it is known to be unmixed.
- % Hence we can use
- easyprimarydecomposition m2;
-
- % Example 2 :
- % The affine monomial curve with generic point (t^7,t^9,t^10).
- setideal(m,affine_monomial_curve({7,9,10},{x,y,z}));
- % The base ring was changed as side effect :
- getring();
- vars:=first getring m;
- % Some advanced commutative algebra :
-
- % The analytic spread of m.
- analytic_spread m;
- % The Rees ring Rees_R(vars) over R=S/m.
-
- rees:=blowup(m,vars,{u,v,w});
- % It is multihomogeneous wrt. the degree vectors, constructed during
- % blow up. Lets compute weighted Hilbert series :
- setideal(rees,rees)$
- weights:=second getring();
- weightedhilbertseries(gbasis rees,weights);
- % gr_R(vars), the associated graded ring of the irrelevant ideal
- % over R. The short way.
- interreduce sub(x=0,y=0,z=0,rees);
- % The long (and more general) way. Gives the result in another
- % embedding.
-
- % Restore the base ring, since it was changed by blowup as a side
- % effect.
- setring getring m$
- assgrad(m,vars,{u,v,w});
- % Comparing the Rees algebra and the symmetric algebra of M :
-
- setring getring m$
- setideal(rees,blowup({},m,{a,b,c}));
- % Lets test weighted Hilbert series once more :
- weights:=second getring();
- weightedhilbertseries(gbasis rees,weights);
- % The symmetric algebra :
- setring getring m$
- setideal(sym,sym(m,{a,b,c}));
- modequalp(rees,sym);
- % Symbolic powers :
- setring getring m$
- setideal(m2,idealpower(m,2));
- % Let's compute a second symbolic power :
- setideal(m3,symbolic_power(m,2));
- % It is different from the ordinary second power.
- % Hence m2 has a trivial component.
- modequalp(m2,m3);
- % Test x for non zero divisor property :
- nzdp(x,m2);
- nzdp(x,m3);
- % Here is the primary decomposition :
- pd:=primarydecomposition m2;
- % Compare the result with m2 :
- setideal(m4,matintersect(first first pd, first second pd));
- modequalp(m2,m4);
- % Compare the result with m3 :
- setideal(m4,first first pd)$
- modequalp(m3,m4);
- % The trivial component can also be removed with a stable
- % quotient computation :
- setideal(m5,matstabquot(m2,vars))$
- modequalp(m3,m5);
- % Example 3 : The Macaulay curve.
- setideal(m,proj_monomial_curve({0,1,3,4},{w,x,y,z}));
- vars:=first getring();
- gbasis m;
-
- % Test whether m is prime :
- isprime m;
- % A resolution of m :
-
- resolve m;
- % m has depth = 1 as can be seen from the
-
- gradedbettinumbers m;
- % Another way to see the non perfectness of m :
-
- hilbertseries m;
- % Just a third approach. Divide out a parameter system :
- ps:=for i:=1:2 collect random_linear_form(vars,1000);
- setideal(m1,matsum(m,ps))$
- % dim should be zero and degree > degree m = 4.
- % A Gbasis for m1 is computed automatically.
- dim m1;
- degree m1;
- % The projections of m on the coord. hyperplanes.
-
- for each x in vars collect eliminate(m,{x});
- % Example 4 : Two submodules of S^4.
-
- % Get the stored result of the earlier computation.
- r:=resolve m$
- % See whether cali!=degrees contains a relict from earlier
- % computations.
-
- getdegrees();
- % Introduce the 2nd and 3rd syzygy module as new modules.
- % Both are submodules in S^4.
- setmodule(m1,second r)$ setmodule(m2,third r)$
-
- % The second is already a gbasis.
- setgbasis m2;
- getleadterms m1; getleadterms m2;
- % Since rk(F/M)=rk(F/in(M)), they have ranks 1 resp. 3.
- dim m1;
- indepvarsets m1;
- % Its intersection is zero :
- matintersect(m1,m2);
- % Its sum :
-
- setmodule(m3,matsum(m1,m2));
- dim m3;
- % Hence it has a nontrivial annihilator :
- annihilator m3;
- % One can compute isolated primes and primary decomposition also for
- % modules. Let's do it, although being trivial here:
-
- isolatedprimes m3;
- primarydecomposition m3;
- % To get a meaningful Hilbert series make m1 homogeneous :
-
- setdegrees {1,x,x,x};
-
- % Reevaluate m1 with the new column degrees.
- setmodule(m1,m1)$
- hilbertseries m1;
- % Example 5 : From the MACAULAY manual (D.Bayer, M.Stillman).
- % An elliptic curve on the Veronese in P^5.
- rvars:={x,y,z}$ svars:={a,b,c,d,e,f}$
- r:=setring(rvars,degreeorder rvars,revlex)$
- s:=setring(svars,{for each x in svars collect 2},revlex)$
- map:={s,r,{a=x^2,b=x*y,c=x*z,d=y^2,e=y*z,f=z^2}};
- preimage({y^2z-x^3-x*z^2},map);
- % Example 6 : The preimage under a rational map.
- r:=setring({x,y},{},lex)$ s:=setring({t},{},lex)$
- map:={r,s,{x=2t/(t^2+1),y=(t^2-1)/(t^2+1)}};
-
- % The preimage of (0) is the equation of the circle :
- ratpreimage({},map);
- % The preimage of the point (t=3/2) :
- ratpreimage({2t-3},map);
- % Example 7 : A zerodimensional ideal.
- setring({x,y,z},{},lex)$
- setideal(n,{x**2 + y + z - 3,x + y**2 + z - 3,x + y + z**2 - 3});
- % The groebner algorithm with factorization :
- groebfactor n;
- % Change the term order and reevaluate n :
- setring({x,y,z},{{1,1,1}},revlex)$
- setideal(n,n);
- % its primes :
-
- zeroprimes n;
- % a vector space basis of S/n :
- getkbase n;
- % Example 8 : A modular computation. Since REDUCE has no multivariate
- % factorizer, factorprimes has to be turned off !
- on modular$ off factorprimes$
- setmod 181; setideal(n1,n); zeroprimes n1;
- setmod 7; setideal(n1,n); zeroprimes n1;
-
- % Hence some of the primes glue together mod 7.
- zeroprimarydecomposition n1;
- off modular$ on factorprimes$
- % Example 9 : Independent sets once more.
-
- n:=10$
- vars:=for i:=1:(2*n) collect mkid(x,i)$
- setring(vars,{},lex)$
- setideal(m,for j:=0:n collect
- for i:=(j+1):(j+n) product mkid(x,i));
- setgbasis m$
- indepvarsets m;
- dim m;
- degree m;
- comment
- ####################################
- ### ###
- ### Local Standard Bases ###
- ### ###
- ####################################
- end comment;
- % Example 10 : An example from [ Alonso, Mora, Raimondo ]
- vars := {z,x,y}$
- r:=setring(vars,{},lex)$
- setideal(m,{x^3+(x^2-y^2)*z+z^4,y^3+(x^2-y^2)*z-z^4});
- dim m;
- degree m;
- % 2 = codim m is the codimension of the curve m. The defining
- % equations of the singular locus with their nilpotent structure :
- singular_locus(m,2);
- groebfactor ws;
- % Hence this curve has two singular points :
- % (x=y=z=0) and (y=-x=256/81,z=64/27)
- % Let's find the brances of the curve through the origin.
- % The first critical tropism is (-1,-1,-1).
- off noetherian$
- setring(vars,{{-1,-1,-1}},lex)$
- setideal(m,m);
- % Let's first test two different approaches, not fully
- % integrated into the algebraic interface :
- setideal(m1,homstbasis m);
- setideal(m2,lazystbasis m);
- setgbasis m1$ setgbasis m2$
- modequalp(m1,m2);
- gbasis m;
- modequalp(m,m1);
- dim m;
- degree m;
- % Find the tangent directions not in z-direction :
- tangentcone m;
- setideal(n,sub(z=1,ws));
- setring r$ on noetherian$ setideal(n,n)$
- degree n;
- % The points of n outside the origin.
- matstabquot(n,{x,y});
- % Hence there are two branches x=z'*(a-3+x'),y=z'*(a+y'),z=z'
- % with the algebraic number a : a^2-3a+3=0
- % and the new equations for (z',x',y') :
- setrules {a^2=>3a-3};
- sub(x=z*(a-3+x),y=z*(a+y),m);
- setideal(m1,matqquot(ws,z));
- % This defines a loc. smooth system at the origin, since the
- % jacobian at the origin of the gbasis is nonsingular :
- off noetherian$
- setring getring m;
- setideal(m1,m1);
- gbasis m1;
- % clear the rules previously set.
- setrules {};
- % Example 11 : The standard basis of another example.
- % Comparing different approaches.
- vars:={x,y}$
- setring(vars,localorder vars,lex);
- ff:=x^5+y^11+(x+x^3)*y^9;
- setideal(p1,mat2list matjac({ff},vars));
- gbasis p1;
- gbtestversion 2$
- setideal(p2,p1);
- gbasis p2;
- gbtestversion 3$
- setideal(p3,p1);
- gbasis p3;
- gbtestversion 1$
- modequalp(p1,p2);
- modequalp(p1,p3);
- dim p1;
- degree p1;
- % Example 12 : A local intersection wrt. a non inflimited term order.
- setring({x,y,z},{},revlex);
- m1:=matintersect({x-y^2,y-x^2},{x-z^2,z-x^2},{y-z^2,z-y^2});
-
- % Delete polynomial units post factum :
-
- deleteunits ws;
- % Detecting polynomial units early :
- on detectunits;
- m1:=matintersect({x-y^2,y-x^2},{x-z^2,z-x^2},{y-z^2,z-y^2});
- off detectunits;
- comment
- ####################################
- ### ###
- ### More Advanced Computations ###
- ### ###
- ####################################
- end comment;
- % Return to a noetherian term order:
-
- vars:={x,y,z}$
- setring(vars,degreeorder vars,revlex);
- on noetherian;
- % Example 13 : Use of "mod".
- % Polynomials modulo ideals :
- setideal(m,{2x^2+y+5,3y^2+z+7,7z^2+x+1});
- x^2*y^2*z^2 mod m;
- % Lists of polynomials modulo ideals :
- {x^3,y^3,z^3} mod gbasis m;
- % Matrices modulo modules :
- mm:=mat((x^4,y^4,z^4));
- mm1:=tp<< ideal2mat m>>;
- mm mod mm1;
- % Example 14 : Powersums through elementary symmetric functions.
- vars:={a,b,c,d,e1,e2,e3,e4}$
- setring(vars,{},lex)$
- m:=interreduce {a+b+c+d-e1,
- a*b+a*c+a*d+b*c+b*d+c*d-e2,
- a*b*c+a*b*d+a*c*d+b*c*d-e3,
- a*b*c*d-e4};
-
- for n:=1:5 collect a^n+b^n+c^n+d^n mod m;
- % Example 15 : The setrules mechanism.
- setring({x,y,z},{},lex)$
- setrules {aa^3=>aa+1};
- setideal(m,{x^2+y+z-aa,x+y^2+z-aa,x+y+z^2-aa});
- gbasis m;
-
- % Clear the rules previously set.
- setrules {};
- % Example 16 : The same example with advanced coefficient domains.
- load_package arnum;
- defpoly aa^3-aa-1;
- setideal(m,{x^2+y+z-aa,x+y^2+z-aa,x+y+z^2-aa});
- gbasis m;
- % The following needs some more time since factorization of
- % arnum's is not so easy :
- groebfactor m;
- off arnum;
- off rational;
- comment
- ####################################
- ### ###
- ### Using Advanced Scripts in ###
- ### a Complex Example ###
- ### ###
- ####################################
- end comment;
- % Example 17 : The square of the 2-minors of a symmetric 3x3-matrix.
- vars:=for i:=1:6 collect mkid(x,i);
- setring(vars,degreeorder vars,revlex);
- % Generating the ideal :
- mm:=mat((x1,x2,x3),(x2,x4,x5),(x3,x5,x6));
- m:=ideal_of_minors(mm,2);
- setideal(n,idealpower(m,2));
- % The ideal itself :
- gbasis n;
- length n;
- dim n;
- degree n;
- % Its radical.
- radical n;
- % Its unmixed radical.
- unmixedradical n;
- % Its equidimensional hull :
- n1:=eqhull n;
- length n1;
- setideal(n1,n1)$
- submodulep(n,n1);
- submodulep(n1,n);
- % Hence there is an embedded component. Let's find it making
- % an excursion to symbolic mode. Of course, this can be done
- % also algebraically.
- symbolic;
- n:=get('n,'basis);
- % This needs even more time than the eqhull, of course.
- u:=primarydecomposition!* n;
- for each x in u collect easydim!* cadr x;
- for each x in u collect degree!* car x;
- % Hence the embedded component is a trivial one. Let's divide
- % it out by a stable ideal quotient calculation :
- algebraic;
- setideal(n2,matstabquot(n,vars));
- modequalp(n1,n2);
- comment
- ########################################
- ### ###
- ### Test Examples for New Features ###
- ### ###
- ########################################
- end comment;
- % ==> Testing the different zerodimensional solver
- vars:={x,y,z}$
- setring(vars,degreeorder vars,revlex);
- setideal(m,{x^3+y+z-3,y^3+x+z-3,z^3+x+y-3});
- zerosolve1 m;
- zerosolve2 m;
- setring(vars,{},lex)$ setideal(m,m)$ m1:=gbasis m$
- zerosolve m1;
- zerosolve1 m1;
- zerosolve2 m1;
- % ==> Testing groebfactor, extendedgroebfactor, extendedgroebfactor1
- % Gerdt et al. : Seventh order KdV type equation.
- A1:=-2*L1**2+L1*L2+2*L1*L3-L2**2-7*L5+21*L6$
- A2:=7*L7-2*L1*L4+3/7*L1**3$
- B1:=L1*(5*L1-3*L2+L3)$
- B2:=L1*(2*L6-4*L4)$
- B3:=L1*L7/2$
- P1:=L1*(L4-L5/2+L6)$
- P2:=(2/7*L1**2-L4)*(-10*L1+5*L2-L3)$
- P3:=(2/7*L1**2-L4)*(3*L4-L5+L6)$
- P4:=A1*(-3*L1+2*L2)+21*A2$
- P5:=A1*(2*L4-2*L5)+A2*(-45*L1+15*L2-3*L3)$
- P6:=2*A1*L7+A2*(12*L4-3*L5+2*L6)$
- P7:=B1*(2*L2-L1)+7*B2$
- P8:=B1*L3+7*B2$
- P9:=B1*(-2*L4-2*L5)+B2*(2*L2-8*L1)+84*B3$
- P10:=B1*(8/3*L5+6*L6)+B2*(11*L1-17/3*L2+5/3*L3)-168*B3$
- P11:=15*B1*L7+B2*(5*L4-2*L5)+B3*(-120*L1+30*L2-6*L3)$
- P12:=-3*B1*L7+B2*(-L4/2+L5/4-L6/2)+B3*(24*L1-6*L2)$
- P13:=3*B2*L7+B3*(40*L4-8*L5+4*L6)$
- polys:={P1,P2,P3,P4,P5,P6,P7,P8,P9,P10,P11,P12,P13};
- vars:={L7,L6,L5,L4,L3,L2,L1};
- clear a1,a2,b1,b2,b3$
- off lexefgb;
- setring(vars,{},lex);
- % The factorized Groebner algorithm.
- groebfactor polys;
- % The extended Groebner factorizer, producing triangular sets.
- extendedgroebfactor polys;
- % The extended Groebner factorizer with subproblem removal check.
- extendedgroebfactor1 polys;
- % Gonnet's example (ACM SIGSAM Bulletin 17 (1983), 48 - 49)
- vars:={a0,a2,a3,a4,a5,b0,b1,b2,b3,b4,b5,c0,c1,c2,c3,c4,c5};
- polys:={a4*b4,
- a5*b1+b5+a4*b3+a3*b4,
- a2*b2,a5*b5,
- (a0+1+a4)*b2+a2*(b0+b1+b4)+c2,
- (a0+1+a4)*(b0+b1+b4)+(a3+a5)*b2+a2*(b3+b5)+c0+c1+c4,
- (a3+a5)*(b0+b1+b4)+(b3+b5)*(a0+1+a4)+c3+c5-1,
- (a3+a5)*(b3+b5),
- a5*(b3+b5)+b5*(a3+a5),
- b5*(a0+1+2*a4)+a5*(b0+b1+2*b4)+a3*b4+a4*b3+c5,
- a4*(b0+b1+2*b4)+a2*b5+a5*b2+(a0+1)*b4+c4,
- a2*b4+a4*b2,
- a4*b5+a5*b4,
- 2*a3*b3+a3*b5+a5*b3,
- c3+b3*(a0+2+a4)+a3*(b0+2*b1+b4)+b5+a5*b1,
- c1+(a0+2+a4)*b1+a2*b3+a3*b2+(b0+b4),
- a2*b1+b2,
- a5*b3+a3*b5,
- b4+a4*b1};
- on lexefgb; % Switching back to the default.
- setring(vars,{},lex);
- groebfactor polys;
- extendedgroebfactor polys;
- extendedgroebfactor1 polys;
- % Schwarz' example s5
- vars:=for k:=1:5 collect mkid(x,k);
- s5:={
- x1**2+x1+2*x2*x5+2*x3*x4,
- 2*x1*x2+x2+2*x3*x5+x4**2,
- 2*x1*x3+x2**2+x3+2*x4*x5,
- 2*x1*x4+2*x2*x3+x4+x5**2,
- 2*x1*x5+2*x2*x4+x3**2+x5};
- setring(vars,degreeorder vars,revlex);
- m:=groebfactor s5;
- % Recompute a list of problems with listgroebfactor for another term
- % order.
- setring(vars,{},lex);
- listgroebfactor m;
- % ==> Testing the linear algebra package
- % Find the ideal of points in affine and projective space.
- vars:=for k:=1:6 collect mkid(x,k);
- setring(vars,degreeorder vars,revlex);
- matrix mm(10,6);
- on rounded;
- for k:=1:6 do for l:=1:10 do mm(l,k):=floor(exp((k+l)/4));
- off rounded;
- mm;
- setideal(u,affine_points mm); setgbasis u$ dim u; degree u;
- setideal(u,proj_points mm); setgbasis u$ dim u; degree u;
- % Change the term order to pure lex in dimension zero.
- % Test both approaches, with and without precomputed borderbasis.
- vars:=for k:=1:6 collect mkid(x,k);
- r1:=setring(vars,{},lex);
- r2:=setring(vars,degreeorder vars,revlex);
- setideal(m,{x1**2+x1+2*x2*x6+2*x3*x5+x4**2,
- 2*x1*x2+x2+2*x3*x6+2*x4*x5,
- 2*x1*x3+x2**2+x3+2*x4*x6+x5**2,
- 2*x1*x4+2*x2*x3+x4+2*x5*x6,
- 2*x1*x5+2*x2*x4+x3**2+x5+x6**2,
- 2*x1*x6+2*x2*x5+2*x3*x4+x6});
- gbasis m;
- m1:=change_termorder(m,r1);
- setring r2$ m2:=change_termorder1(m,r1);
- setideal(m1,m1)$ setideal(m2,m2)$
- setgbasis m1$ setgbasis m2$ modequalp(m1,m2);
- % ==> Different hilbert series driver
-
- setideal(m,proj_monomial_curve(w1:={0,2,5,9},{w,x,y,z}));
- weights:={{1,1,1,1},w1};
- hftestversion 2;
- f1:=weightedhilbertseries(gbasis m,weights);
- sub(x=1,ws); % The ordinary Hilbert series.
- hftestversion 1; % The default.
- f2:=weightedhilbertseries(gbasis m,weights);
- sub(x=1,ws);
- f1-f2;
- % ==> Different primary decomposition approaches. The example is due
- % to Shimoyama Takeshi. CALI 2.2. produced auxiliary embedded
- % primes on it.
- vars:={dx,dy,x,y};
- setring(vars,degreeorder vars,revlex);
- f3:={DY*( - X*DX + Y**2*DY - Y*DY),DX*(X**2*DX - X*DX - Y*DY)}$
- primarydecomposition f3;
- showtime;
- end;
|