123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562 |
- COMMENT
- THE REDUCE INTEGRATION TEST PACKAGE
- Edited By
- Anthony C. Hearn
- The RAND Corporation
- This file is designed to provide a set of representative tests of the
- Reduce integration package. Not all examples go through, even when an
- integral exists, since some of the arguments are outside the domain of
- applicability of the current package. However, future improvements to
- the package will result in more closed-form evaluations in later
- releases. We would appreciate any additional contributions to this test
- file either because they illustrate some feature (good or bad) of the
- current package, or suggest domains which future versions should handle.
- Any suggestions for improved organization of this test file (e.g., in a
- way which corresponds more directly to the organization of a standard
- integration table book such as Gradshteyn and Ryznik) are welcome.
- Acknowledgments:
- The examples in this file have been contributed by the following.
- Any omissions to this list should be reported to the Editor.
- David M. Dahm
- James H. Davenport
- John P. Fitch
- Steven Harrington
- Anthony C. Hearn
- K. Siegfried Koelbig
- Ernst Krupnikov
- Arthur C. Norman
- Herbert Stoyan
- ;
- Comment we first set up a suitable testing functions;
- fluid '(gcknt!*);
- global '(faillist!* gcnumber!* inittime number!-of!-integrals
- unintlist!*);
- symbolic operator time;
- symbolic procedure initialize!-integral!-test;
- begin
- faillist!* := unintlist!* := nil;
- number!-of!-integrals := 0;
- gcnumber!* := gcknt!*;
- inittime := time()
- end;
- symbolic procedure summarize!-integral!-test;
- begin scalar totaltime;
- totaltime := time()-inittime;
- prin2t
- " ***** SUMMARY OF INTEGRAL TESTS *****";
- terpri();
- prin2 "Number of integrals tested: ";
- prin2t number!-of!-integrals;
- terpri();
- prin2 "Total time taken: ";
- prin2 totaltime;
- prin2t " ms";
- terpri();
- if gcnumber!*
- then <<prin2 "Number of garbage collections: ";
- prin2t (gcknt!* - gcnumber!*);
- terpri()>>;
- prin2 "Number of incorrect integrals: ";
- prin2t length faillist!*;
- terpri();
- prin2 "Number of unevaluated integrals: ";
- prin2t length unintlist!*;
- terpri();
- if faillist!*
- then <<prin2t "Integrands of incorrect integrals are:";
- for each x in reverse faillist!* do mathprint car x>>;
- if unintlist!*
- then <<prin2t "Integrands of unevaluated integrals are:";
- terpri();
- for each x in reverse unintlist!* do mathprint car x>>
- end;
- procedure testint(a,b);
- begin scalar der,diffce,res,tt;
- tt:=time();
- symbolic (number!-of!-integrals := number!-of!-integrals + 1);
- res:=int(a,b);
- % write "time for integral: ",time()-tt," ms";
- der := df(res,b);
- diffce := der-a;
- if diffce neq 0
- then begin for all x let cot x=cos x/sin x,
- sec x=1/cos x,
- sin x**2=1-cos x**2,
- tan(x/2)=sin x/(1+cos x),
- tan x=sin x/cos x,
- tanh x=
- (e**(x)-e**(-x))/(e**x+e**(-x)),
- coth x= 1/tanh x;
- diffce := diffce;
- for all x clear cot x,sec x,sin x**2,tan x,tan(x/2),
- tanh x,coth x
- end;
- %hopefully, difference appeared non-zero due to absence of
- %above transformations;
- if diffce neq 0
- then <<on combineexpt; diffce := diffce; off combineexpt>>;
- if diffce neq 0
- then begin scalar !*reduced;
- !*reduced := t;
- for all x let cos(2x)= 1-2sin x**2, sin x**2=1-cos x**2;
- diffce := diffce;
- for all x clear cos(2x),sin x**2
- end;
- if diffce neq 0
- then <<write
- " ***** DERIVATIVE OF INTEGRAL NOT EQUAL TO INTEGRAND *****";
- symbolic(faillist!* := list(a,b,res,der) . faillist!*)>>;
- symbolic if smemq('int,res)
- then unintlist!* := list(a,b,res) . unintlist!*;
- return res
- end;
- symbolic initialize!-integral!-test();
- % References are to Gradshteyn and Ryznik.
- testint(1+x+x**2,x);
- testint(x**2*(2*x**2+x)**2,x);
- testint(x*(x**2+2*x+1),x);
- testint(1/x,x); % 2.01 #2;
- testint((x+1)**3/(x-1)**4,x);
- testint(1/(x*(x-1)*(x+1)**2),x);
- testint((a*x+b)/((x-p)*(x-q)),x);
- testint(1/(a*x**2+b*x+c),x);
- testint((a*x+b)/(1+x**2),x);
- testint(1/(x**2-2*x+3),x);
- % Rational function examples from Hardy, Pure Mathematics, p 253 et seq.
- testint(1/((x-1)*(x**2+1))**2,x);
- testint(x/((x-a)*(x-b)*(x-c)),x);
- testint(x/((x**2+a**2)*(x**2+b**2)),x);
- testint(x**2/((x**2+a**2)*(x**2+b**2)),x);
- testint(x/((x-1)*(x**2+1)),x);
- testint(x/(1+x**3),x);
- testint(x**3/((x-1)**2*(x**3+1)),x);
- testint(1/(1+x**4),x);
- testint(x**2/(1+x**4),x);
- testint(1/(1+x**2+x**4),x);
- % Examples involving a+b*x.
- z := a+b*x;
- testint(z**p,x);
- testint(x*z**p,x);
- testint(x**2*z**p,x);
- testint(1/z,x);
- testint(1/z**2,x);
- testint(x/z,x);
- testint(x**2/z,x);
- testint(1/(x*z),x);
- testint(1/(x**2*z),x);
- testint(1/(x*z)**2,x);
- testint(1/(c**2+x**2),x);
- testint(1/(c**2-x**2),x);
- % More complicated rational function examples, mostly contributed
- % by David M. Dahm, who also developed the code to integrate them.
- testint(1/(2*x**3-1),x);
- testint(1/(x**3-2),x);
- testint(1/(a*x**3-b),x);
- testint(1/(x**4-2),x);
- testint(1/(5*x**4-1),x);
- testint(1/(3*x**4+7),x);
- testint(1/(x**4+3*x**2-1),x);
- testint(1/(x**4-3*x**2-1),x);
- testint(1/(x**4-3*x**2+1),x);
- testint(1/(x**4-4*x**2+1),x);
- testint(1/(x**4+4*x**2+1),x);
- testint(1/(x**4+x**2+2),x);
- testint(1/(x**4-x**2+2),x);
- testint(1/(x**6-1),x);
- testint(1/(x**6-2),x);
- testint(1/(x**6+2),x);
- testint(1/(x**8+1),x);
- testint(1/(x**8-1),x);
- testint(1/(x**8-x**4+1),x);
- testint(x**7/(x**12+1),x);
- % Examples involving logarithms.
- testint(log x,x);
- testint(x*log x,x);
- testint(x**2*log x,x);
- testint(x**p*log x,x);
- testint((log x)**2,x);
- testint(x**9*log x**11,x);
- testint(log x**2/x,x);
- testint(1/log x,x);
- testint(1/log(x+1),x);
- testint(1/(x*log x),x);
- testint(1/(x*log x)**2,x);
- testint((log x)**p/x,x);
- testint(log x *(a*x+b),x);
- testint((a*x+b)**2*log x,x);
- testint(log x/(a*x+b)**2,x);
- testint(x*log (a*x+b),x);
- testint(x**2*log(a*x+b),x);
- testint(log(x**2+a**2),x);
- testint(x*log(x**2+a**2),x);
- testint(x**2*log(x**2+a**2),x);
- testint(x**4*log(x**2+a**2),x);
- testint(log(x**2-a**2),x);
- testint(log(log(log(log(x)))),x);
- % Examples involving circular functions.
- testint(sin x,x); % 2.01 #5;
- testint(cos x,x); % #6;
- testint(tan x,x); % #11;
- testint(1/tan(x),x); % 2.01 #12;
- testint(1/(1+tan(x))**2,x);
- testint(1/cos x,x);
- testint(1/sin x,x);
- testint(sin x**2,x);
- testint(x**3*sin(x**2),x);
- testint(sin x**3,x);
- testint(sin x**p,x);
- testint((sin x**2+1)**2*cos x,x);
- testint(cos x**2,x);
- testint(cos x**3,x);
- testint(sin(a*x+b),x);
- testint(1/cos x**2,x);
- testint(sin x*sin(2*x),x);
- testint(x*sin x,x);
- testint(x**2*sin x,x);
- testint(x*sin x**2,x);
- testint(x**2*sin x**2,x);
- testint(x*sin x**3,x);
- testint(x*cos x,x);
- testint(x**2*cos x,x);
- testint(x*cos x**2,x);
- testint(x**2*cos x**2,x);
- testint(x*cos x**3,x);
- testint(sin x/x,x);
- testint(cos x/x,x);
- testint(sin x/x**2,x);
- testint(sin x**2/x,x);
- testint(tan x**3,x);
- % z := a+b*x;
- testint(sin z,x);
- testint(cos z,x);
- testint(tan z,x);
- testint(1/tan z,x);
- testint(1/sin z,x);
- testint(1/cos z,x);
- testint(sin z**2,x);
- testint(sin z**3,x);
- testint(cos z**2,x);
- testint(cos z**3,x);
- testint(1/cos z**2,x);
- testint(1/(1+cos x),x);
- testint(1/(1-cos x),x);
- testint(1/(1+sin x),x);
- testint(1/(1-sin x),x);
- testint(1/(a+b*sin x),x);
- testint(1/(a+b*sin x+cos x),x);
- testint(x**2*sin z**2,x);
- testint(cos x*cos(2*x),x);
- testint(x**2*cos z**2,x);
- testint(1/tan x**3,x);
- testint(x**3*tan(x)**4,x);
- testint(x**3*tan(x)**6,x);
- testint(x*tan(x)**2,x);
- testint(sin(2*x)*cos(3*x),x);
- testint(sin x**2*cos x**2,x);
- testint(1/(sin x**2*cos x**2),x);
- testint(d**x*sin x,x);
- testint(d**x*cos x,x);
- testint(x*d**x*sin x,x);
- testint(x*d**x*cos x,x);
- testint(x**2*d**x*sin x,x);
- testint(x**2*d**x*cos x,x);
- testint(x**3*d**x*sin x,x);
- testint(x**3*d**x*cos x,x);
- testint(sin x*sin(2*x)*sin(3*x),x);
- testint(cos x*cos(2*x)*cos(3*x),x);
- testint(sin(x*kx)**3*x**2,x);
- testint(x*cos(xi/sin(x))*cos(x)/sin(x)**2,x);
- % Mixed angles and half angles.
- int(cos(x)/(sin(x)*tan(x/2)),x);
- % This integral produces a messy result because the code for
- % converting half angle tans to sin and cos is not effective enough.
- testint(sin(a*x)/(b+c*sin(a*x))**2,x);
- % Examples involving logarithms and circular functions.
- testint(sin log x,x);
- testint(cos log x,x);
- % Examples involving exponentials.
- testint(e**x,x); % 2.01 #3;
- testint(a**x,x); % 2.01 #4;
- testint(e**(a*x),x);
- testint(e**(a*x)/x,x);
- testint(1/(a+b*e**(m*x)),x);
- testint(e**(2*x)/(1+e**x),x);
- testint(e**(2*x)*e**(a*x),x);
- testint(1/(a*e**(m*x)+b*e**(-m*x)),x);
- testint(x*e**(a*x),x);
- testint(x**20*e**x,x);
- testint(a**x/b**x,x);
- testint(a**x*b**x,x);
- testint(a**x/x**2,x);
- testint(x*a**x/(1+b*x)**2,x);
- testint(x*e**(a*x)/(1+a*x)**2,x);
- testint(x*k**(x**2),x);
- testint(e**(x**2),x);
- testint(x*e**(x**2),x);
- testint((x+1)*e**(1/x)/x**4,x);
- testint((2*x**3+x)*(e**(x**2))**2*e**(1-x*e**(x**2))/(1-x*e**(x**2))**2,
- x);
- testint(e**(e**(e**(e**x))),x);
- % Examples involving exponentials and logarithms.
- testint(e**x*log x,x);
- testint(x*e**x*log x,x);
- testint(e**(2*x)*log(e**x),x);
- % Examples involving square roots.
- testint(sqrt(2)*x**2 + 2*x,x);
- testint(log x/sqrt(a*x+b),x);
- u:=sqrt(a+b*x);
- v:=sqrt(c+d*x);
- testint(u*v,x);
- testint(u,x);
- testint(x*u,x);
- testint(x**2*u,x);
- testint(u/x,x);
- testint(u/x**2,x);
- testint(1/u,x);
- testint(x/u,x);
- testint(x**2/u,x);
- testint(1/(x*u),x);
- testint(1/(x**2*u),x);
- testint(u**p,x);
- testint(x*u**p,x);
- testint(atan((-sqrt(2)+2*x)/sqrt(2)),x);
- testint(1/sqrt(x**2-1),x);
- testint(sqrt(x+1)*sqrt x,x);
- testint(sin(sqrt x),x);
- testint(x*(1-x^2)^(-9/4),x);
- testint(x/sqrt(1-x^4),x);
- testint(1/(x*sqrt(1+x^4)),x);
- testint(x/sqrt(1+x^2+x^4),x);
- testint(1/(x*sqrt(x^2-1-x^4)),x);
- % Examples from James Davenport's thesis:
- testint(1/sqrt(x**2-1)+10/sqrt(x**2-4),x); % p. 173
- testint(sqrt(x+sqrt(x**2+a**2))/x,x);
- % Examples generated by differentiating various functions.
- testint(df(sqrt(1+x**2)/(1-x),x),x);
- testint(df(log(x+sqrt(1+x**2)),x),x);
- testint(df(sqrt(x)+sqrt(x+1)+sqrt(x+2),x),x);
- testint(df(sqrt(x**5-2*x+1)-sqrt(x**3+1),x),x);
- % Another such example from James Davenport's thesis (p. 146).
- % It contains a point of order 3, which is found by use of Mazur's
- % bound on the torsion of elliptic curves over the rationals;
- testint(df(log(1+sqrt(x**3+1)),x),x);
- % Examples quoted by Joel Moses:
- testint(1/sqrt(2*h*r**2-alpha**2),r);
- testint(1/(r*sqrt(2*h*r**2-alpha**2-epsilon**2)),r);
- testint(1/(r*sqrt(2*h*r**2-alpha**2-2*k*r)),r);
- testint(1/(r*sqrt(2*h*r**2-alpha**2-epsilon**2-2*k*r)),r);
- testint(r/sqrt(2*e*r**2-alpha**2),r);
- testint(r/sqrt(2*e*r**2-alpha**2-epsilon**2),r);
- testint(r/sqrt(2*e*r**2-alpha**2-2*k*r**4),r);
- testint(r/sqrt(2*e*r**2-alpha**2-2*k*r),r);
- testint(1/(r*sqrt(2*h*r**2-alpha**2-2*k*r**4)),r);
- testint(1/(r*sqrt(2*h*r**2-alpha**2-epsilon**2-2*k*r**4)),r);
- Comment many of these integrals used to require Steve Harrington's
- code to evaluate. They originated in Novosibirsk as examples
- of using Analytik. There are still a few examples that could
- be evaluated using better heuristics;
- testint(a*sin(3*x+5)**2*cos(3*x+5),x);
- testint(log(x**2)/x**3,x);
- testint(x*sin(x+a),x);
- testint((log(x)*(1-x)-1)/(e**x*log(x)**2),x);
- testint(x**3*(a*x**2+b)**(-1),x);
- testint(x**(1/2)*(x+1)**(-7/2),x);
- testint(x**(-1)*(x+1)**(-1),x);
- testint(x**(-1/2)*(2*x-1)**(-1),x);
- testint((x**2+1)*x**(1/2),x);
- testint(x**(-1)*(x-a)**(1/3),x);
- testint(x*sinh(x),x);
- testint(x*cosh(x),x);
- testint(sinh(2*x)/cosh(2*x),x);
- testint((i*eps*sinh x-1)/(eps*i*cosh x+i*a-x),x);
- testint(sin(2*x+3)*cos(x)**2,x);
- testint(x*atan(x),x);
- testint(x*acot(x),x);
- testint(x*log(x**2+a),x);
- testint(sin(x+a)*cos(x),x);
- testint(cos(x+a)*sin(x),x);
- testint((1+sin(x))**(1/2),x);
- testint((1-sin(x))**(1/2),x);
- testint((1+cos(x))**(1/2),x);
- testint((1-cos(x))**(1/2),x);
- testint(1/(x**(1/2)-(x-1)**(1/2)),x);
- testint(1/(1-(x+1)**(1/2)),x);
- testint(x/(x**4+36)**(1/2),x);
- testint(1/(x**(1/3)+x**(1/2)),x);
- testint(log(2+3*x**2),x);
- testint(cot(x),x);
- testint(cot x**4,x);
- testint(tanh(x),x);
- testint(coth(x),x);
- testint(b**x,x);
- testint((x**4+x**(-4)+2)**(1/2),x);
- testint((2*x+1)/(3*x+2),x);
- testint(x*log(x+(x**2+1)**(1/2)),x);
- testint(x*(e**x*sin(x)+1)**2,x);
- testint(x*e**x*cos(x),x);
- Comment the following set came from Herbert Stoyan;
- testint(1/(x-3)**4,x);
- testint(x/(x**3-1),x);
- testint(x/(x**4-1),x);
- testint(log(x)*(x**3+1)/(x**4+2),x);
- testint(log(x)+log(x+1)+log(x+2),x);
- testint(1/(x**3+5),x);
- testint(1/sqrt(1+x**2),x);
- testint(sqrt(x**2+3),x);
- testint(x/(x+1)**2,x);
- COMMENT The following integrals were used among others as a test of
- Moses' SIN program;
- testint(asin x,x);
- testint(x**2*asin x,x);
- testint(sec x**2/(1+sec x**2-3*tan x),x);
- testint(1/sec x**2,x);
- testint((5*x**2-3*x-2)/(x**2*(x-2)),x);
- testint(1/(4*x**2+9)**(1/2),x);
- testint((x**2+4)**(-1/2),x);
- testint(1/(9*x**2-12*x+10),x);
- testint(1/(x**8-2*x**7+2*x**6-2*x**5+x**4),x);
- testint((a*x**3+b*x**2+c*x+d)/((x+1)*x*(x-3)),x);
- testint(1/(2-log(x**2+1))**5,x);
- % The next integral appeared in Risch's 1968 paper.
- testint(2*x*e**(x**2)*log(x)+e**(x**2)/x+(log(x)-2)/(log(x)**2+x)**2+
- ((2/x)*log(x)+(1/x)+1)/(log(x)**2+x),x);
- % The following integral would not evaluate in REDUCE 3.3.
- testint(exp(x*ze+x/2)*sin(pi*ze)**4*x**4,ze);
- % This one evaluates:
- testint(erf(x),x);
- % So why not this one?
- testint(erf(x+a),x);
- Comment some interesting integrals of algebraic functions;
- % The Chebyshev integral.
- testint((2*x**6+4*x**5+7*x**4-3*x**3-x*x-8*x-8)/
- ((2*x**2-1)**2*sqrt(x**4+4*x**3+2*x**2+1)),x);
- % This integral came from Dr. G.S. Joyce of Imperial College London.
- testint((1+2*y)*sqrt(1-5*y-5*y**2)/(y*(1+y)*(2+y)*sqrt(1-y-y**2)),y);
-
- % This one has a simple result.
- testint(x*(sqrt(x**2-1)*x**2-4*sqrt(x**2-1)+sqrt(x**2-4)*x**2
- -sqrt(x**2-4))/((1+sqrt(x**2-4)+sqrt(x**2-1))*(x**4-5*x**2+4)),x);
- % This used to reveal bugs in the integrator which have been fixed.
- % Since it takes a long time and doesn't have a closed form result,
- % it has been commented out.
- % testint(sqrt(-4*sqrt(2)+9)*x-sqrt(x**4+2*x**2+4*x+1)*sqrt(2),x);
- Comment here is an example of using the integrator with pattern
- matching;
- for all m,n let int(k1**m*log(k1)**n/(p**2-k1**2),k1)=foo(m,n),
- int(k1*log(k1)**n/(p**2-k1**2),k1)=foo(1,n),
- int(k1**m*log(k1)/(p**2-k1**2),k1)=foo(m,1),
- int(k1*log(k1)/(p**2-k1**2),k1)=foo(1,1),
- int(log(k1)**n/(k1*(p**2-k1**2)),k1)=foo(-1,n);
- int(k1**2*log(k1)/(p**2-k1**2),k1);
- COMMENT It is interesting to see how much of this one can be done;
- let f1s= (12*log(s/mc**2)*s**2*pi**2*mc**3*(-8*s-12*mc**2+3*mc)
- + pi**2*(12*s**4*mc+3*s**4+176*s**3*mc**3-24*s**3*mc**2
- -144*s**2*mc**5-48*s*mc**7+24*s*mc**6+4*mc**9-3*mc**8))
- /(384*e**(s/y)*s**2);
- int(f1s,s);
- factor ei,log;
- ws;
- Comment the following integrals reveal deficiencies in the current
- integrator;
- %high degree denominator;
- %testint(1/(2-log(x**2+1))**5,x);
- %this example should evaluate;
- testint(sin(2*x)/cos(x),x);
- %this example, which appeared in Tobey's thesis, needs factorization
- %over algebraic fields. It currently gives an ugly answer and so has
- %been suppressed;
- % testint((7*x**13+10*x**8+4*x**7-7*x**6-4*x**3-4*x**2+3*x+3)/
- % (x**14-2*x**8-2*x**7-2*x**4-4*x**3-x**2+2*x+1),x);
- symbolic summarize!-integral!-test();
- end;
|