123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504 |
- % Author H.-G. Graebe | Univ. Leipzig | Version 20.10.93
- % graebe@informatik.uni-leipzig.d400.de
- COMMENT
- This is an example session demonstrating and testing the facilities
- offered by the commutative algebra package CALI.
- END COMMENT;
- algebraic;
- on echo;
- % Example 1 : Generating ideals of affine and projective points.
- vars:={t,x,y,z};
- setring(vars,degreeorder vars,revlex);
- mm:=mat((1,1,1,1),(1,2,3,4),(2,1,4,3));
- % The ideal with zero set at the point in A^4 with coordinates
- % equal to the row vectors of mm :
- setideal(m1,affine_points mm);
- % All parameters are as they should be :
- gbasis m1$
- dim m1;
- degree m1;
- groebfactor m1;
- resolve m1$
- bettinumbers m1;
- % The ideal with zero set at the point in P^3 with homogeneous
- % coordinates equal to the row vectors of mm :
- setideal(m2,proj_points mm);
- % All parameters as they should be ?
- gbasis m2$
- dim m2;
- degree m2;
- groebfactor m2;
- % It seems to be prime ?
- isprime m2;
- % Not, of course, but it is known to be unmixed. Hence we can use
- easyprimarydecomposition m2;
-
- % Example 2 :
- % An affine monomial curve with generic point (t^7,t^9,t^10).
- setideal(m,affine_monomial_curve({7,9,10},{x,y,z}));
- % The base ring was changed as side effect :
- getring();
- vars:=first getring m;
- % Some advanced commutative algebra .
- % The analytic spread of m.
- analytic_spread m;
- % The Rees ring Rees_R(vars) over R=S/m.
-
- blowup(m,vars,{u,v,w});
- % gr_R(vars), the associated graded ring of the irrelevant ideal
- % over R. The short way.
- interreduce sub(x=0,y=0,z=0,ws);
- % The long (and more general) way. Gives the result in another
- % embedding.
-
- % Reste the base ring, since it was changed by blowup as a side
- % effect.
- setring getring m$
- assgrad(m,vars,{u,v,w});
- % Comparing the Rees algebra and the symmetric algebra of M :
-
- setring getring m$
- setideal(rees,blowup({},m,{a,b,c}));
- setring getring m$
- setideal(sym,sym(m,{a,b,c}));
- gbasis rees$ gbasis sym$
- modequalp(rees,sym);
- % Symbolic powers :
- setring getring m$
- setideal(m2,idealpower(m,2));
- % Let's compute a second symbolic power :
- setideal(m3,symbolic_power(m,2));
- % It is different from the ordinary second power.
- % Hence m2 has a trivial component.
- gbasis m2$ gbasis m3$
- modequalp(m2,m3);
- % Here is the primary decomposition :
- pd:=primarydecomposition m2;
- % Compare the result with m2 :
- setideal(m4,matintersect(first first pd, first second pd));
- gbasis m4$
- modequalp(m2,m4);
- % Compare the result with m3 :
- setideal(m4,first first pd)$
- gbasis m4$
- modequalp(m3,m4);
- % The trivial component can also be removed with a
- % stable quotient computation :
- setideal(m5,matstabquot(m2,vars))$
- gbasis m5$
- modequalp(m3,m5);
- % Example 3 : The Macaulay curve.
- setideal(m,proj_monomial_curve({0,1,3,4},{w,x,y,z}));
- vars:=first getring();
- gbasis m;
-
- % Test whether m is prime :
- isprime m;
- % A resolution of m :
-
- resolve m;
- % m has depth = 1 as can be seen from the
-
- gradedbettinumbers m;
- % Another way to see the non perfectness of m :
-
- hilbseries m;
- % Just a third approach. Divide out a parameter system :
- ps:=for i:=1:2 collect random_linear_form(vars,1000);
- setideal(m1,matsum(m,ps))$ gbasis m1$
-
- % dim should be zero and degree > degree m = 4.
- dim m1;
- degree m1;
- % The projections of m on the coord. hyperplanes.
-
- for each x in vars collect eliminate(m,{x});
- % Example 4 : Two submodules of S^4.
-
- % Get the stored result of the earlier computation.
- r:=resolve m$
- % See whether cali!=degrees contains a relict from earlier
- % computations.
-
- getdegrees();
- % Introduce the 2nd and 3rd syzygy module as new modules.
- % Both are submodules in S^4.
- setmodule(m1,second r)$ setmodule(m2,third r)$
- gbasis m1;
-
- % The second is already a gbasis.
- setgbasis m2;
- getleadterms m1; getleadterms m2;
- % Since rk(F/M)=rk(F/in(M)), they have ranks 1 resp. 3.
- dim m1;
- indepvarsets m1;
- % Its intersection is zero :
- matintersect(m1,m2);
- % Its sum :
-
- setmodule(m3,matsum(m1,m2));
- gbasis m3;
- dim m3;
- % Hence it has a nontrivial annihilator :
- annihilator m3;
-
- % To get a meaningful Hilbert series make m1 homogeneous :
-
- setdegrees {1,x,x,x};
-
- % Reevaluate m1 with the new column degrees.
- setmodule(m1,m1)$
- gbasis m1;
- hilbseries m1;
- % Example 5 : From the MACAULAY manual (D.Bayer, M.Stillman).
- % An elliptic curve on the Veronese in P^5.
- rvars:={x,y,z}$ svars:={a,b,c,d,e,f}$
- r:=setring(rvars,degreeorder rvars,revlex)$
- s:=setring(svars,{for each x in svars collect 2},revlex)$
- map:={s,r,{a=x^2,b=x*y,c=x*z,d=y^2,e=y*z,f=z^2}};
- preimage({y^2z-x^3-x*z^2},map);
- % Example 6 : The preimage under a rational map.
- r:=setring({x,y},{},lex)$ s:=setring({t},{},lex)$
- map:={r,s,{x=2t/(t^2+1),y=(t^2-1)/(t^2+1)}};
-
- % The preimage of (0) is the equation of the circle :
- ratpreimage({},map);
- % The preimage of the point (t=3/2) :
- ratpreimage({2t-3},map);
- % Example 7 : A zerodimensional ideal.
- setring({x,y,z},{},lex)$
- setideal(n,{x**2 + y + z - 3,x + y**2 + z - 3,x + y + z**2 - 3});
- % The groebner algorithm with factorization :
- groebfactor n;
- % Change the term order and reevaluate n :
- setring({x,y,z},{{1,1,1}},revlex)$
- setideal(n,n);
- gbasis n;
- % its primes :
-
- zeroprimes n;
- % a vector space basis of S/n :
- getkbase n;
- % Example 8 : A modular computation.
- on modular$
- setmod 181; setideal(n1,n); zeroprimes n1;
- setmod 7; setideal(n1,n); zeroprimes n1;
-
- % Hence some of the primes glue together mod 7.
- zeroprimarydecomposition n1;
- off modular$
- % Example 9 : Independent sets once more.
-
- n:=10$
- vars:=for i:=1:(2*n) collect mkid(x,i)$
- setring(vars,{},lex)$
- setideal(m,for j:=0:n collect
- for i:=(j+1):(j+n) product mkid(x,i));
- setgbasis m$
- indepvarsets m;
- dim m;
- degree m;
- % Example 10 : An example from [ Alonso, Mora, Raimondo ]
- vars := {z,x,y}$
- r:=setring(vars,{},lex)$
- setideal(m,{x^3+(x^2-y^2)*z+z^4,y^3+(x^2-y^2)*z-z^4});
- gbasis m$
- dim m;
- degree m;
- % 2 = codim m is the codimension of the curve m. The defining
- % equations of the singular locus with their nilpotent structure.
- singular_locus(m,2);
- groebfactor ws;
- % Hence this curve has two singular points :
- % (x=y=z=0) and (y=-x=256/81,z=64/27)
- % Let's find the brances of the curve through the origin.
- % The first critical tropism is (-1,-1,-1).
- off noetherian$
- setring(vars,{{-1,-1,-1}},lex)$
- setideal(m,m);
- % Let's test Lazard's approach.
- off lazy$
- gbasis m;
- dim m;
- degree m;
- % Find the tangent directions not in z-direction :
- tangentcone m;
- setideal(n,sub(z=1,ws));
- setring r$ on noetherian$ setideal(n,n)$
- gbasis n;
- degree n;
- % The points of n outside the origin.
- matstabquot(n,{x,y});
- % Hence there are two branches x=z'*(a-3+x'),y=z'*(a+y'),z=z'
- % with the algebraic number a : a^2-3a+3=0
- % and the new equations for (z',x',y') :
- setrules {a^2=>3a-3};
- sub(x=z*(a-3+x),y=z*(a+y),m);
- setideal(m1,matqquot(ws,z));
- % This defines a loc. smooth system at the origin, since the
- % jacobian at the origin of the gbasis is nonsingular :
- off noetherian$
- % Test Mora's approach.
- on lazy$
- setring getring m;
- setideal(m1,m1);
- gbasis m1;
- % clear the rules previously set.
- setrules {};
- % Example 11 : The standard basis of another example.
- % Comparing Mora's and Lazard's approaches.
- vars:={x,y}$
- setring(vars,localorder vars,lex);
- ff:=x^5+y^11+(x+x^3)*y^9;
- setideal(p,flatten matjac({ff},vars));
- % Mora's approach : Only top reduction allowed.
-
- gbasis p;
- % Lazard's approach : Total normal forms of homogenized polynomials
- % allowed. Hence the computation produces other normal forms.
- off lazy;
- setideal(p,p)$
- gbasis p;
- dim p;
- degree p;
- % Example 12 : A local intersection.
- setring({x,y,z},{},revlex);
- on lazy;
- m1:=matintersect({x-y^2,y-x^2},{x-z^2,z-x^2},{y-z^2,z-y^2});
-
- % Delete polynomial units post factum :
-
- deleteunits ws;
- interreduce ws;
- % Detecting polynomial units early :
- on detectunits;
- m1:=matintersect({x-y^2,y-x^2},{x-z^2,z-x^2},{y-z^2,z-y^2});
- off detectunits;
- % Return to a noetherian term order:
-
- vars:={x,y,z}$
- setring(vars,degreeorder vars,revlex);
- on noetherian;
- % Example 13 : Use of "mod".
- % Polynomials modulo ideals :
- setideal(m,{2x^2+y+5,3y^2+z+7,7z^2+x+1});
- x^2*y^2*z^2 mod m;
- % Lists of polynomials modulo ideals :
- {x^3,y^3,z^3} mod gbasis m;
- % Matrices modulo modules :
- mm:=mat((x^4,y^4,z^4));
- mm1:=tp<< ideal2mat m>>;
- mm mod mm1;
- % Example 14 : Powersums through elementary symmetric functions.
- vars:={a,b,c,d,e1,e2,e3,e4}$
- setring(vars,{},lex)$
- m:=interreduce {a+b+c+d-e1,
- a*b+a*c+a*d+b*c+b*d+c*d-e2,
- a*b*c+a*b*d+a*c*d+b*c*d-e3,
- a*b*c*d-e4};
-
- for n:=1:5 collect a^n+b^n+c^n+d^n mod m;
- % Example 15 : The setrules mechanism.
- setring({x,y,z},{},lex)$
- setrules {aa^3=>aa+1};
- setideal(m,{x^2+y+z-aa,x+y^2+z-aa,x+y+z^2-aa});
- gbasis m;
-
- % Clear the rules previously set.
- setrules {};
- % Example 16 : The same example with advanced coefficient domains.
- load arnum;
- defpoly aa^3-aa-1;
- setideal(m,{x^2+y+z-aa,x+y^2+z-aa,x+y+z^2-aa});
- gbasis m;
- % The following needs some more time since factorization of arnum's
- % is not so easy :
- groebfactor m;
- off arnum;
- off rational;
- % Example 17 : The square of the 2-minors of a symmetric 3x3-matrix.
- vars:=for i:=1:6 collect mkid(x,i);
- setring(vars,degreeorder vars,revlex);
- % Generating the ideal :
- mm:=mat((x1,x2,x3),(x2,x4,x5),(x3,x5,x6));
- m:=minors(mm,2);
- setideal(n,idealpower(m,2));
- % The ideal itself :
- gbasis n;
- length n;
- dim n;
- degree n;
- % Its unmixed radical.
- unmixedradical n;
- % Its equidimensional hull. This needs some more time :
- n1:=eqhull n;
- length n1;
- setideal(n1,n1)$ gbasis n1$
- submodulep(n,n1);
- submodulep(n1,n);
- % Hence there is an embedded component. Let's find it making an
- % excursion to symbolic mode. Of course, this can be done also
- % algebraically.
- symbolic;
- n:=get('n,'basis);
- % This needs even more time than the eqhull, of course.
- u:=primarydecomposition!* n;
- for each x in u collect easydim!* second x;
- for each x in u collect degree!* first x;
- % Hence the embedded component is a trivial one. Let's divide it
- % out by a stable ideal quotient calculation :
- algebraic;
- setideal(n2,matstabquot(n,vars));
- gbasis n2$
- modequalp(n1,n2);
- end;
|