123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758 |
- Sat Jun 29 13:58:16 PDT 1991
- REDUCE 3.4, 15-Jul-91 ...
- 1: 1:
- 2: 2:
- 3: 3: % Tests of the SUM package.
- % Author: Fujio Kako (kako@kako.math.sci.hiroshima-u.ac.jp)
- % 1) Summations.
- sum(n,n);
- N*(N + 1)
- -----------
- 2
- for i:=2:10 do write sum(n**i,n);
- 2
- N*(2*N + 3*N + 1)
- --------------------
- 6
- 2 2
- N *(N + 2*N + 1)
- -------------------
- 4
- 4 3 2
- N*(6*N + 15*N + 10*N - 1)
- ------------------------------
- 30
- 2 4 3 2
- N *(2*N + 6*N + 5*N - 1)
- -----------------------------
- 12
- 6 5 4 2
- N*(6*N + 21*N + 21*N - 7*N + 1)
- -------------------------------------
- 42
- 2 6 5 4 2
- N *(3*N + 12*N + 14*N - 7*N + 2)
- --------------------------------------
- 24
- 8 7 6 4 2
- N*(10*N + 45*N + 60*N - 42*N + 20*N - 3)
- -----------------------------------------------
- 90
- 2 8 7 6 4 2
- N *(2*N + 10*N + 15*N - 14*N + 10*N - 3)
- -----------------------------------------------
- 20
- 10 9 8 6 4 2
- N*(6*N + 33*N + 55*N - 66*N + 66*N - 33*N + 5)
- -------------------------------------------------------
- 66
- sum((n+1)**3,n);
- 3 2
- N*(N + 6*N + 13*N + 12)
- ---------------------------
- 4
- sum(x**n,n);
- N
- X *X
- -------
- X - 1
- sum(n**2*x**n,n);
- N 2 2 2 2
- X *X*(N *X - 2*N *X + N - 2*N*X + 2*N + X + 1)
- --------------------------------------------------
- 3 2
- X - 3*X + 3*X - 1
- sum(1/n,n);
- 1
- SUM(---,N)
- N
- sum(1/n/(n+2),n);
- N*(3*N + 5)
- ------------------
- 2
- 4*(N + 3*N + 2)
- sum(log (n/(n+1)),n);
- 1
- LOG(-------)
- N + 1
- % 2) Expressions including trigonometric functions.
- sum(sin(n*x),n);
- 2*N*X + X
- - COS(-----------)
- 2
- ---------------------
- X
- 2*SIN(---)
- 2
- sum(n*sin(n*x),n,1,k);
- SIN(K*X + X)*K - SIN(K*X)*K - SIN(K*X)
- ----------------------------------------
- 2*(COS(X) - 1)
- sum(cos((2*r-1)*pi/n),r);
- 2*R*PI
- SIN(--------)
- N
- ---------------
- PI
- 2*SIN(----)
- N
- sum(cos((2*r-1)*pi/n),r,1,n);
- 0
- sum(cos((2*r-1)*pi/(2*n+1)),r);
- 2*R*PI
- SIN(---------)
- 2*N + 1
- ------------------
- PI
- 2*SIN(---------)
- 2*N + 1
- sum(cos((2*r-1)*pi/(2*n+1)),r,1,n);
- 2*N*PI
- SIN(---------)
- 2*N + 1
- ------------------
- PI
- 2*SIN(---------)
- 2*N + 1
- sum(sin((2*r-1)*x),r,1,n);
- - COS(2*N*X) + 1
- -------------------
- 2*SIN(X)
- sum(cos((2*r-1)*x),r,1,n);
- SIN(2*N*X)
- ------------
- 2*SIN(X)
- sum(sin(n*x)**2,n);
- - SIN(2*N*X + X) + 2*SIN(X)*N
- --------------------------------
- 4*SIN(X)
- sum(cos(n*x)**2,n);
- SIN(2*N*X + X) + 2*SIN(X)*N
- -----------------------------
- 4*SIN(X)
- sum(sin(n*x)*sin((n+1)*x),n);
- - SIN(2*N*X + 2*X) + SIN(2*X)*N
- ----------------------------------
- 4*SIN(X)
- sum(sec(n*x)*sec((n+1)*x),n);
- SUM(SEC(N*X + X)*SEC(N*X),N)
- sum(1/2**n*tan(x/2**n),n);
- X
- TAN(----)
- N
- 2
- SUM(-----------,N)
- N
- 2
- sum(sin(r*x)*sin((r+1)*x),r,1,n);
- - SIN(2*N*X + 2*X) + SIN(2*X)*N + SIN(2*X)
- ---------------------------------------------
- 4*SIN(X)
- sum(sec(r*x)*sec((r+1)*x),r,1,n);
- SUM(SEC(R*X + X)*SEC(R*X),R,1,N)
- sum(1/2**r*tan(x/2**r),r,1,n);
- X
- TAN(----)
- R
- 2
- SUM(-----------,R,1,N)
- R
- 2
- sum(k*sin(k*x),k,1,n - 1);
- - SIN(N*X - X)*N + SIN(N*X)*N - SIN(N*X)
- -------------------------------------------
- 2*(COS(X) - 1)
- sum(k*cos(k*x),k,1,n - 1);
- - COS(N*X - X)*N + COS(N*X)*N - COS(N*X) + 1
- -----------------------------------------------
- 2*(COS(X) - 1)
- sum(sin((2k - 1)*x),k,1,n);
- - COS(2*N*X) + 1
- -------------------
- 2*SIN(X)
- sum(sin(x + k*y),k,0,n);
- 2*N*Y + 2*X + Y 2*X - Y
- - COS(-----------------) + COS(---------)
- 2 2
- --------------------------------------------
- Y
- 2*SIN(---)
- 2
- sum(cos(x + k*y),k,0,n);
- 2*N*Y + 2*X + Y 2*X - Y
- SIN(-----------------) - SIN(---------)
- 2 2
- -----------------------------------------
- Y
- 2*SIN(---)
- 2
- sum((-1)**(k - 1)*sin((2k - 1)*x),k,1,n + 1);
- N
- ( - 1) *SIN(2*N*X + 2*X)
- --------------------------
- 2*COS(X)
- sum((-1)**(k - 1)*cos((2k - 1)*x),k,1,n + 1);
- N
- ( - 1) *COS(2*N*X + 2*X) + 1
- ------------------------------
- 2*COS(X)
- sum(r**k*sin(k*x),k,1,n - 1);
- N N
- - R *SIN(N*X - X)*R + R *SIN(N*X) - SIN(X)*R
- -----------------------------------------------
- 2
- 2*COS(X)*R - R - 1
- sum(r**k*cos(k*x),k,0,n - 1);
- N N
- - R *COS(N*X - X)*R + R *COS(N*X) + COS(X)*R - 1
- ---------------------------------------------------
- 2
- 2*COS(X)*R - R - 1
- sum(sin(k*x)*sin((k + 1)*x),k,1,n);
- - SIN(2*N*X + 2*X) + SIN(2*X)*N + SIN(2*X)
- ---------------------------------------------
- 4*SIN(X)
- sum(sin(k*x)*sin((k + 2)*x),k,1,n);
- - SIN(2*N*X + 3*X) + SIN(3*X)*N + SIN(3*X) - SIN(X)*N
- --------------------------------------------------------
- 4*SIN(X)
- sum(sin(k*x)*sin((2k - 1)*x),k,1,n);
- 6*N*X + X 2*N*X - 3*X 2*N*X - X
- ( - SIN(-----------) + SIN(-------------) + SIN(-----------)
- 2 2 2
- 2*N*X + X 3*X X 3*X
- + SIN(-----------) + SIN(-----) + SIN(---))/(4*SIN(-----))
- 2 2 2 2
- % The next examples cannot be summed in closed form.
- sum(1/(cos(x/2**k)*2**k)**2,k,1,n);
- 1
- SUM(-----------------,K,1,N)
- 2*K X 2
- 2 *COS(----)
- K
- 2
- sum((2**k*sin(x/2**k)**2)**2,k,1,n);
- 2*K X 4
- SUM(2 *SIN(----) ,K,1,N)
- K
- 2
- sum(tan(x/2**k)/2**k,k,0,n);
- X
- TAN(----)
- K
- 2
- SUM(-----------,K,0,N)
- K
- 2
- sum(cos(k**2*2*pi/n),k,0,n - 1);
- 2
- 2*K *PI
- SUM(COS(---------),K,0,N - 1)
- N
- sum(sin(k*pi/n),k,1,n - 1);
- 2*N*PI - PI PI
- - COS(-------------) + COS(-----)
- 2*N 2*N
- ------------------------------------
- PI
- 2*SIN(-----)
- 2*N
- % 3) Expressions including the factorial function.
- for all n,m such that fixp m let
- factorial(n+m)=if m > 0 then factorial(n+m-1)*(n+m)
- else factorial(n+m+1)/(n+m+1);
- sum(n*factorial(n),n);
- FACTORIAL(N)*(N + 1)
- sum(n/factorial(n+1),n);
- - 1
- ----------------------
- FACTORIAL(N)*(N + 1)
- sum((n**2+n-1)/factorial(n+2),n);
- - 1
- ----------------------
- FACTORIAL(N)*(N + 2)
- sum(n*2**n/factorial(n+2),n);
- N
- - 2*2
- -----------------------------
- 2
- FACTORIAL(N)*(N + 3*N + 2)
- sum(n*x**n/factorial(n+2),n);
- N
- X *N
- SUM(-----------------------------------------------------,N)
- 2
- FACTORIAL(N)*N + 3*FACTORIAL(N)*N + 2*FACTORIAL(N)
- for all n,m such that fixp m and m > 3 let
- factorial((n+m)/2)= factorial((n+m)/2-1)*((n+m)/2),
- factorial((n-m)/2)= factorial((n-m)/2+1)/((n-m)/2+1);
- sum(factorial(n-1/2)/factorial(n+1),n);
- 2*N - 1
- FACTORIAL(---------)
- 2
- SUM(-------------------------------,N)
- FACTORIAL(N)*N + FACTORIAL(N)
- for all n,m such that fixp m and m > 3 clear factorial((n+m)/2);
- for all n,m such that fixp m and m > 3 clear factorial((n-m)/2);
- % 4) Expressions including combination.
- operator comb;
- % Combination function.
- for all n ,m let comb(n,m)=factorial(n)/factorial(n-m)/factorial(m);
- sum((-1)**k*comb(n,k),k,1,m);
- M M
- ( - ( - 1) *FACTORIAL(N)*M + ( - 1) *FACTORIAL(N)*N
- - FACTORIAL( - M + N)*FACTORIAL(M)*N)/(FACTORIAL( - M + N)
- *FACTORIAL(M)*N)
- sum(comb(n + p,q)/comb(n + r,q + 2),n,1,m);
- ( - FACTORIAL( - Q + R)*FACTORIAL(M + P - Q)*FACTORIAL(M + R)
- *FACTORIAL(P)*M*P*Q - 2*FACTORIAL( - Q + R)*FACTORIAL(M + P - Q)
- *FACTORIAL(M + R)*FACTORIAL(P)*M*P - FACTORIAL( - Q + R)
- *FACTORIAL(M + P - Q)*FACTORIAL(M + R)*FACTORIAL(P)*M*Q - 2
- *FACTORIAL( - Q + R)*FACTORIAL(M + P - Q)*FACTORIAL(M + R)
- *FACTORIAL(P)*M + FACTORIAL( - Q + R)*FACTORIAL(M + P - Q)
- 2
- *FACTORIAL(M + R)*FACTORIAL(P)*P*Q - FACTORIAL( - Q + R)
- *FACTORIAL(M + P - Q)*FACTORIAL(M + R)*FACTORIAL(P)*P*Q*R + 2
- *FACTORIAL( - Q + R)*FACTORIAL(M + P - Q)*FACTORIAL(M + R)
- *FACTORIAL(P)*P*Q - 2*FACTORIAL( - Q + R)*FACTORIAL(M + P - Q)
- *FACTORIAL(M + R)*FACTORIAL(P)*P*R + FACTORIAL( - Q + R)
- 2
- *FACTORIAL(M + P - Q)*FACTORIAL(M + R)*FACTORIAL(P)*Q -
- FACTORIAL( - Q + R)*FACTORIAL(M + P - Q)*FACTORIAL(M + R)
- *FACTORIAL(P)*Q*R + 2*FACTORIAL( - Q + R)*FACTORIAL(M + P - Q)
- *FACTORIAL(M + R)*FACTORIAL(P)*Q - 2*FACTORIAL( - Q + R)
- *FACTORIAL(M + P - Q)*FACTORIAL(M + R)*FACTORIAL(P)*R -
- FACTORIAL(M - Q + R)*FACTORIAL(M + P)*FACTORIAL(P - Q)*FACTORIAL(R)
- 2
- *M*Q + FACTORIAL(M - Q + R)*FACTORIAL(M + P)*FACTORIAL(P - Q)
- *FACTORIAL(R)*M*Q*R - 2*FACTORIAL(M - Q + R)*FACTORIAL(M + P)
- *FACTORIAL(P - Q)*FACTORIAL(R)*M*Q + 2*FACTORIAL(M - Q + R)
- *FACTORIAL(M + P)*FACTORIAL(P - Q)*FACTORIAL(R)*M*R -
- FACTORIAL(M - Q + R)*FACTORIAL(M + P)*FACTORIAL(P - Q)*FACTORIAL(R)
- 2
- *P*Q + FACTORIAL(M - Q + R)*FACTORIAL(M + P)*FACTORIAL(P - Q)
- *FACTORIAL(R)*P*Q*R - 2*FACTORIAL(M - Q + R)*FACTORIAL(M + P)
- *FACTORIAL(P - Q)*FACTORIAL(R)*P*Q + 2*FACTORIAL(M - Q + R)
- *FACTORIAL(M + P)*FACTORIAL(P - Q)*FACTORIAL(R)*P*R -
- FACTORIAL(M - Q + R)*FACTORIAL(M + P)*FACTORIAL(P - Q)*FACTORIAL(R)
- 2
- *Q + FACTORIAL(M - Q + R)*FACTORIAL(M + P)*FACTORIAL(P - Q)
- *FACTORIAL(R)*Q*R - 2*FACTORIAL(M - Q + R)*FACTORIAL(M + P)
- *FACTORIAL(P - Q)*FACTORIAL(R)*Q + 2*FACTORIAL(M - Q + R)
- *FACTORIAL(M + P)*FACTORIAL(P - Q)*FACTORIAL(R)*R)/(
- FACTORIAL(M + P - Q)*FACTORIAL(M + R)*FACTORIAL(P - Q)
- 2 2
- *FACTORIAL(R)*(M*P*Q - M*P*R - M*Q*R + M*Q + M*R - M*R - P*Q
- 2 2 2 2 3 2
- + 2*P*Q*R - P*R + Q *R - Q - 2*Q*R + 2*Q*R + R - R ))
- sum((-1)**(k + 1)*comb(n,k)/(k + 1),k,1,n);
- N
- -------
- N + 1
- for all n ,m clear comb(n,m);
- for all n,m such that fixp m clear factorial(n+m);
- % 3) Examples taken from
- % "Decision procedure for indefinite hypergeometric summation"
- % Proc. Natl. Acad. Sci. USA vol. 75, no. 1 pp.40-42 (1978)
- % R. William Gosper, Jr.
- %
- % n
- % ____ 2
- % f = || (b*k +c*k+d)
- % k=1
- %
- % n
- % ____ 2
- % g = || (b*k +c*k+e)
- % k=1
- %
- operator f,g;
- for all n,m such that fixp m let
- f(n+m)=if m > 0 then f(n+m-1)*(b*(n+m)**2+c*(n+m)+d)
- else f(n+m+1)/(b*(n+m+1)**2+c*(n+m+1)+d);
- for all n,m such that fixp m let
- g(n+m)=if m > 0 then g(n+m-1)*(b*(n+m)**2+c*(n+m)+e)
- else g(n+m+1)/(b*(n+m+1)**2+c*(n+m+1)+e);
- sum(f(n-1)/g(n),n);
- F(N)
- --------------
- G(N)*(D - E)
- sum(f(n-1)/g(n+1),n);
- 2 2 2 2
- (F(N)*(2*B *N + 4*B *N + 2*B + 2*B*C*N + 2*B*C + 2*B*D*N + 3*B*D
- 2 2
- - 2*B*E*N - B*E + C*D - C*E + D - 2*D*E + E ))/(G(N)*(
- 3 2 3 3 3 2 3 3
- B *D*N + 2*B *D*N + B *D - B *E*N - 2*B *E*N - B *E
- 2 2 2 2 2 2 2
- + B *C*D*N + B *C*D - B *C*E*N - B *C*E + 2*B *D *N
- 2 2 2 2 2 2 2 2 2 2
- + 4*B *D *N + 2*B *D + B *D*E - 2*B *E *N - 4*B *E *N
- 2 2 2 2 2 2 2 2
- - 3*B *E - B*C *D*N - 2*B*C *D*N - B*C *D + B*C *E*N
- 2 2 2 2 2
- + 2*B*C *E*N + B*C *E + 2*B*C*D *N + 2*B*C*D - 2*B*C*E *N
- 2 3 2 3 3 2 2
- - 2*B*C*E + B*D *N + 2*B*D *N + B*D - 3*B*D *E*N
- 2 2 2 2 2 2
- - 6*B*D *E*N - B*D *E + 3*B*D*E *N + 6*B*D*E *N + 3*B*D*E
- 3 2 3 3 3 3 3 3
- - B*E *N - 2*B*E *N - 3*B*E - C *D*N - C *D + C *E*N + C *E
- 2 2 2 3 3 2 2
- - C *D*E + C *E + C*D *N + C*D - 3*C*D *E*N - 3*C*D *E
- 2 2 3 3 3 2 2
- + 3*C*D*E *N + 3*C*D*E - C*E *N - C*E + D *E - 3*D *E
- 3 4
- + 3*D*E - E ))
- for all n,m such that fixp m clear f(n+m);
- for all n,m such that fixp m clear g(n+m);
- clear f,g;
- % 4) Products.
- prod(n/(n+2),n);
- 2
- --------------
- 2
- N + 3*N + 2
- prod(x**n,n);
- 2
- (N + N)/2
- X
- prod(e**(sin(n*x)),n);
- 1
- ----------------------------------
- COS((2*N*X + X)/2)/(2*SIN(X/2))
- E
- end;
- 4: 4:
- Quitting
- Sat Jun 29 13:59:23 PDT 1991
|