123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778 |
- Sat Jun 29 13:37:28 PDT 1991
- REDUCE 3.4, 15-Jul-91 ...
- 1: 1:
- 2: 2:
- 3: 3: showtime;
- Time: 0 ms
- comment some examples of the FOR statement;
- comment summing the squares of the even positive integers
- through 50;
- for i:=2 step 2 until 50 sum i**2;
- 22100
- comment to set w to the factorial of 10;
- w := for i:=1:10 product i;
- W := 3628800
- comment alternatively, we could set the elements a(i) of the
- array a to the factorial of i by the statements;
- array a(10);
- a(0):=1$
- for i:=1:10 do a(i):=i*a(i-1);
- comment the above version of the FOR statement does not return
- an algebraic value, but we can now use these array
- elements as factorials in expressions, e. g.;
- 1+a(5);
- 121
- comment we could have printed the values of each a(i)
- as they were computed by writing the FOR statement as;
- for i:=1:10 do write a(i):= i*a(i-1);
- A(1) := 1
- A(2) := 2
- A(3) := 6
- A(4) := 24
- A(5) := 120
- A(6) := 720
- A(7) := 5040
- A(8) := 40320
- A(9) := 362880
- A(10) := 3628800
- comment another way to use factorials would be to introduce an
- operator FAC by an integer procedure as follows;
- integer procedure fac (n);
- begin integer m;
- m:=1;
- l1: if n=0 then return m;
- m:=m*n;
- n:=n-1;
- go to l1
- end;
- FAC
- comment we can now use fac as an operator in expressions, e. g.;
- z**2+fac(4)-2*fac 2*y;
- 2
- - 4*Y + Z + 24
- comment note in the above example that the parentheses around
- the arguments of FAC may be omitted since it is a unary operator;
- comment the following examples illustrate the solution of some
- complete problems;
- comment the f and g series (ref Sconzo, P., Leschack, A. R. and
- Tobey, R. G., Astronomical Journal, Vol 70 (May 1965);
- deps:= -sig*(mu+2*eps)$
- dmu:= -3*mu*sig$
- dsig:= eps-2*sig**2$
- f1:= 1$
- g1:= 0$
-
- for i:= 1:8 do
- <<f2:= -mu*g1 + deps*df(f1,eps) + dmu*df(f1,mu) + dsig*df(f1,sig);
- write "F(",i,") := ",f2;
- g2:= f1 + deps*df(g1,eps) + dmu*df(g1,mu) + dsig*df(g1,sig);
- write "G(",i,") := ",g2;
- f1:=f2;
- g1:=g2>>;
- F(1) := 0
- G(1) := 1
- F(2) := - MU
- G(2) := 0
- F(3) := 3*SIG*MU
- G(3) := - MU
- 2
- F(4) := MU*(3*EPS - 15*SIG + MU)
- G(4) := 6*SIG*MU
- 2
- F(5) := 15*SIG*MU*( - 3*EPS + 7*SIG - MU)
- 2
- G(5) := MU*(9*EPS - 45*SIG + MU)
- 2 2 4
- F(6) := MU*( - 45*EPS + 630*EPS*SIG - 24*EPS*MU - 945*SIG
- 2 2
- + 210*SIG *MU - MU )
- 2
- G(6) := 30*SIG*MU*( - 6*EPS + 14*SIG - MU)
- 2 2 4
- F(7) := 63*SIG*MU*(25*EPS - 150*EPS*SIG + 14*EPS*MU + 165*SIG
- 2 2
- - 50*SIG *MU + MU )
- 2 2 4
- G(7) := MU*( - 225*EPS + 3150*EPS*SIG - 54*EPS*MU - 4725*SIG
- 2 2
- + 630*SIG *MU - MU )
- 3 2 2 2
- F(8) := MU*(1575*EPS - 42525*EPS *SIG + 1107*EPS *MU
- 4 2 2
- + 155925*EPS*SIG - 24570*EPS*SIG *MU + 117*EPS*MU
- 6 4 2 2 3
- - 135135*SIG + 51975*SIG *MU - 2205*SIG *MU + MU )
- 2 2 4
- G(8) := 126*SIG*MU*(75*EPS - 450*EPS*SIG + 24*EPS*MU + 495*SIG
- 2 2
- - 100*SIG *MU + MU )
- comment a problem in Fourier analysis;
- factor cos,sin;
- on list;
- (a1*cos(wt) + a3*cos(3*wt) + b1*sin(wt) + b3*sin(3*wt))**3
- where {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,
- cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2,
- sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2,
- cos(~x)**2 => (1+cos(2*x))/2,
- sin(~x)**2 => (1-cos(2*x))/2};
- 2
- (COS(9*WT)*A3*(A3
- 2
- -3*B3 )
- 2
- +3*COS(7*WT)*(A1*A3
- 2
- -A1*B3
- -2*A3*B1*B3)
- 2
- +3*COS(5*WT)*(A1 *A3
- 2
- +A1*A3
- -2*A1*B1*B3
- 2
- -A1*B3
- 2
- -A3*B1
- +2*A3*B1*B3)
- 3
- +COS(3*WT)*(A1
- 2
- +6*A1 *A3
- 2
- -3*A1*B1
- 3
- +3*A3
- 2
- +6*A3*B1
- 2
- +3*A3*B3 )
- 3
- +3*COS(WT)*(A1
- 2
- +A1 *A3
- 2
- +2*A1*A3
- 2
- +A1*B1
- +2*A1*B1*B3
- 2
- +2*A1*B3
- 2
- -A3*B1 )
- 2
- +SIN(9*WT)*B3*(3*A3
- 2
- -B3 )
- +3*SIN(7*WT)*(2*A1*A3*B3
- 2
- +A3 *B1
- 2
- -B1*B3 )
- 2
- +3*SIN(5*WT)*(A1 *B3
- +2*A1*A3*B1
- +2*A1*A3*B3
- 2
- -A3 *B1
- 2
- -B1 *B3
- 2
- +B1*B3 )
- 2
- +SIN(3*WT)*(3*A1 *B1
- 2
- +6*A1 *B3
- 2
- +3*A3 *B3
- 3
- -B1
- 2
- +6*B1 *B3
- 3
- +3*B3 )
- 2
- +3*SIN(WT)*(A1 *B1
- 2
- +A1 *B3
- -2*A1*A3*B1
- 2
- +2*A3 *B1
- 3
- +B1
- 2
- -B1 *B3
- 2
- +2*B1*B3 ))/4
- remfac cos,sin;
- off list;
- comment end of Fourier analysis example;
- comment the following program, written in collaboration with David
- Barton and John Fitch, solves a problem in general relativity. it
- will compute the Einstein tensor from any given metric;
- on nero;
- comment here we introduce the covariant and contravariant metrics;
- operator p1,q1,x;
- array gg(3,3),h(3,3);
- gg(0,0):=e**(q1(x(1)))$
- gg(1,1):=-e**(p1(x(1)))$
- gg(2,2):=-x(1)**2$
- gg(3,3):=-x(1)**2*sin(x(2))**2$
- for i:=0:3 do h(i,i):=1/gg(i,i);
- comment generate Christoffel symbols and store in arrays cs1 and cs2;
- array cs1(3,3,3),cs2(3,3,3);
- for i:=0:3 do for j:=i:3 do
- <<for k:=0:3 do
- cs1(j,i,k) := cs1(i,j,k):=(df(gg(i,k),x(j))+df(gg(j,k),x(i))
- -df(gg(i,j),x(k)))/2;
- for k:=0:3 do cs2(j,i,k):= cs2(i,j,k) := for p := 0:3
- sum h(k,p)*cs1(i,j,p)>>;
- comment now compute the Riemann tensor and store in r(i,j,k,l);
- array r(3,3,3,3);
- for i:=0:3 do for j:=i+1:3 do for k:=i:3 do
- for l:=k+1:if k=i then j else 3 do
- <<r(j,i,l,k) := r(i,j,k,l) := for q := 0:3
- sum gg(i,q)*(df(cs2(k,j,q),x(l))-df(cs2(j,l,q),x(k))
- + for p:=0:3 sum (cs2(p,l,q)*cs2(k,j,p)
- -cs2(p,k,q)*cs2(l,j,p)));
- r(i,j,l,k) := -r(i,j,k,l);
- r(j,i,k,l) := -r(i,j,k,l);
- if i neq k or j>l
- then <<r(k,l,i,j) := r(l,k,j,i) := r(i,j,k,l);
- r(l,k,i,j) := -r(i,j,k,l);
- r(k,l,j,i) := -r(i,j,k,l)>>>>;
- comment now compute and print the Ricci tensor;
- array ricci(3,3);
- for i:=0:3 do for j:=0:3 do
- write ricci(j,i) := ricci(i,j) := for p := 0:3 sum for q := 0:3
- sum h(p,q)*r(q,i,p,j);
- Q1(X(1))
- RICCI(0,0) := RICCI(0,0) := (E *(
- X(1)*DF(P1(X(1)),X(1))*DF(Q1(X(1)),X(1))
- 2
- - 2*X(1)*DF(Q1(X(1)),X(1),2) - X(1)*DF(Q1(X(1)),X(1))
- P1(X(1))
- - 4*DF(Q1(X(1)),X(1))))/(4*E *X(1))
- RICCI(1,1) := RICCI(1,1) := (
- - X(1)*DF(P1(X(1)),X(1))*DF(Q1(X(1)),X(1))
- 2
- + 2*X(1)*DF(Q1(X(1)),X(1),2) + X(1)*DF(Q1(X(1)),X(1))
- - 4*DF(P1(X(1)),X(1)))/(4*X(1))
- RICCI(2,2) := RICCI(2,2) := ( - X(1)*DF(P1(X(1)),X(1))
- P1(X(1)) P1(X(1))
- + X(1)*DF(Q1(X(1)),X(1)) - 2*E + 2)/(2*E )
- 2
- RICCI(3,3) := RICCI(3,3) := (SIN(X(2)) *( - X(1)*DF(P1(X(1)),X(1))
- P1(X(1)) P1(X(1))
- + X(1)*DF(Q1(X(1)),X(1)) - 2*E + 2))/(2*E )
- comment now compute and print the Ricci scalar;
- rs := for i:= 0:3 sum for j:= 0:3 sum h(i,j)*ricci(i,j);
- 2
- RS := (X(1) *DF(P1(X(1)),X(1))*DF(Q1(X(1)),X(1))
- 2 2 2
- - 2*X(1) *DF(Q1(X(1)),X(1),2) - X(1) *DF(Q1(X(1)),X(1))
- + 4*X(1)*DF(P1(X(1)),X(1)) - 4*X(1)*DF(Q1(X(1)),X(1))
- P1(X(1)) P1(X(1)) 2
- + 4*E - 4)/(2*E *X(1) )
- comment finally compute and print the Einstein tensor;
- array einstein(3,3);
- for i:=0:3 do for j:=0:3 do
- write einstein(i,j):=ricci(i,j)-rs*gg(i,j)/2;
- EINSTEIN(0,0) :=
- Q1(X(1)) P1(X(1))
- E *( - X(1)*DF(P1(X(1)),X(1)) - E + 1)
- -------------------------------------------------------
- P1(X(1)) 2
- E *X(1)
- P1(X(1))
- - X(1)*DF(Q1(X(1)),X(1)) + E - 1
- EINSTEIN(1,1) := -------------------------------------------
- 2
- X(1)
- EINSTEIN(2,2) := (X(1)*(X(1)*DF(P1(X(1)),X(1))*DF(Q1(X(1)),X(1))
- - 2*X(1)*DF(Q1(X(1)),X(1),2)
- 2
- - X(1)*DF(Q1(X(1)),X(1))
- + 2*DF(P1(X(1)),X(1)) - 2*DF(Q1(X(1)),X(1))))
- P1(X(1))
- /(4*E )
- 2
- EINSTEIN(3,3) := (X(1)*SIN(X(2)) *(
- X(1)*DF(P1(X(1)),X(1))*DF(Q1(X(1)),X(1))
- - 2*X(1)*DF(Q1(X(1)),X(1),2)
- 2
- - X(1)*DF(Q1(X(1)),X(1))
- + 2*DF(P1(X(1)),X(1)) - 2*DF(Q1(X(1)),X(1))))
- P1(X(1))
- /(4*E )
- comment end of Einstein tensor program;
- clear gg,h,cs1,cs2,r,ricci,einstein;
- comment an example using the matrix facility;
- matrix xx,yy,zz;
- let xx= mat((a11,a12),(a21,a22)),
- yy= mat((y1),(y2));
- 2*det xx - 3*w;
- 2*(A11*A22 - A12*A21 - 5443200)
- zz:= xx**(-1)*yy;
- [ - A12*Y2 + A22*Y1 ]
- [--------------------]
- [ A11*A22 - A12*A21 ]
- ZZ := [ ]
- [ A11*Y2 - A21*Y1 ]
- [------------------- ]
- [ A11*A22 - A12*A21 ]
- 1/xx**2;
- 2
- A12*A21 + A22
- MAT((-------------------------------------------,
- 2 2 2 2
- A11 *A22 - 2*A11*A12*A21*A22 + A12 *A21
- - A12*(A11 + A22)
- -------------------------------------------),
- 2 2 2 2
- A11 *A22 - 2*A11*A12*A21*A22 + A12 *A21
- - A21*(A11 + A22)
- (-------------------------------------------,
- 2 2 2 2
- A11 *A22 - 2*A11*A12*A21*A22 + A12 *A21
- 2
- A11 + A12*A21
- -------------------------------------------))
- 2 2 2 2
- A11 *A22 - 2*A11*A12*A21*A22 + A12 *A21
- comment end of matrix examples;
- comment a physics example;
- on div;
- comment this gives us output in same form as Bjorken and Drell;
- mass ki= 0, kf= 0, p1= m, pf= m;
- vector ei,ef;
- mshell ki,kf,p1,pf;
- let p1.ei= 0, p1.ef= 0, p1.pf= m**2+ki.kf, p1.ki= m*k,p1.kf=
- m*kp, pf.ei= -kf.ei, pf.ef= ki.ef, pf.ki= m*kp, pf.kf=
- m*k, ki.ei= 0, ki.kf= m*(k-kp), kf.ef= 0, ei.ei= -1, ef.ef=
- -1;
-
- operator gp;
- for all p let gp(p)= g(l,p)+m;
- comment this is just to save us a lot of writing;
- gp(pf)*(g(l,ef,ei,ki)/(2*ki.p1) + g(l,ei,ef,kf)/(2*kf.p1))
- * gp(p1)*(g(l,ki,ei,ef)/(2*ki.p1) + g(l,kf,ef,ei)/(2*kf.p1))$
- write "The Compton cross-section is ",ws;
- 2 1 -1 1 -1
- The Compton cross-section is 2*EI.EF + ---*K*KP + ---*K *KP - 1
- 2 2
- comment end of first physics example;
-
- off div;
- comment another physics example;
- index ix,iy,iz;
- mass p1=mm,p2=mm,p3= mm,p4= mm,k1=0;
- mshell p1,p2,p3,p4,k1;
- vector q1,q2;
- factor mm,p1.p3;
- operator ga,gb;
- for all p let ga(p)=g(la,p)+mm, gb(p)= g(lb,p)+mm;
-
- ga(-p2)*g(la,ix)*ga(-p4)*g(la,iy)* (gb(p3)*g(lb,ix)*gb(q1)
- *g(lb,iz)*gb(p1)*g(lb,iy)*gb(q2)*g(lb,iz) + gb(p3)
- *g(lb,iz)*gb(q2)*g(lb,ix)*gb(p1)*g(lb,iz)*gb(q1)*g(lb,iy))$
- let q1=p1-k1, q2=p3+k1;
-
- comment it is usually faster to make such substitutions after all the
- trace algebra is done;
- write "CXN =",ws;
- 4 4 2 2
- CXN =32*MM *P1.P3 + 8*MM *(P1.K1 - P3.K1) - 16*MM *P1.P3
- 2
- + 16*MM *P1.P3*( - P1.K1 - P2.P4 + P3.K1)
- 2
- + 8*MM *( - P1.K1*P2.P4 + P2.P4*P3.K1 - 2*P2.K1*P4.K1) + 8
- *P1.P3*(2*P1.P2*P3.P4 + P1.P2*P4.K1 + 2*P1.P4*P2.P3
- + P1.P4*P2.K1 - P2.P3*P4.K1 - P2.K1*P3.P4) + 8*(
- - 2*P1.P2*P1.P4*P3.K1 + P1.P2*P1.K1*P3.P4
- - P1.P2*P3.P4*P3.K1 + P1.P4*P1.K1*P2.P3 - P1.P4*P2.P3*P3.K1
- + 2*P1.K1*P2.P3*P3.P4)
- comment end of second physics example;
-
- showtime;
- Time: 7344 ms
- end;
- 4: 4:
- Quitting
- Sat Jun 29 13:37:36 PDT 1991
|