123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- Sat Jun 29 14:15:50 PDT 1991
- REDUCE 3.4, 15-Jul-91 ...
- 1: 1:
- 2: 2:
- *** + redefined
- *** - redefined
- *** * redefined
- *** / redefined
- *** ^ redefined
- 3: 3: %===========================================
- %test file for ORTHOVEC version 2, June 1990
- %===========================================
- showtime;
- Time: 17 ms
- %example 1: vector identity
- a:=svec(a1,a2,a3);
- A := [A1,A2,A3]
- b:=svec(b1,b2,b3);
- B := [B1,B2,B3]
- c:=svec(c1,c2,c3);
- C := [C1,C2,C3]
- d:=svec(d1,d2,d3);
- D := [D1,D2,D3]
- a><b*c><d - (a*c)*(b*d) + (a*d)*(b*c);
- 0
- %showtime;
- %example 2: Equation of Motion in cylindricals
- vstart$
- Select Coordinate System by number
- 1] cartesian
- 2] cylindrical
- 3] spherical
- 4] general
- 5] others
- 2
- coordinate type = 2
- coordinates = R,TH,Z
- scale factors = 1,R,1
- v:=svec(vr,vt,vz)$
- b:=svec(br,bt,bz)$
- depend v,r,th,z$
- depend b,r,th,z$
- depend p,r,th,z$
- eom:=vout( vdf(v,tt) + v dotgrad v + grad(p) - curl(b) >< b )$
- [1] (DF(P,R)*R + DF(VR,R)*R*VR + DF(VR,Z)*R*VZ + DF(VR,TH)*VT
- - DF(BR,Z)*R*BZ - DF(BR,TH)*BT + DF(BT,R)*R*BT + DF(BZ,R)*R*BZ
- 2 2
- - VT + BT )/R
- [2] (DF(P,TH) + DF(VT,R)*R*VR + DF(VT,Z)*R*VZ + DF(VT,TH)*VT
- + DF(BR,TH)*BR - DF(BT,R)*R*BR - DF(BT,Z)*R*BZ + DF(BZ,TH)*BZ
- + VR*VT - BR*BT)/R
- [3] (DF(P,Z)*R + DF(VZ,R)*R*VR + DF(VZ,Z)*R*VZ + DF(VZ,TH)*VT
- + DF(BR,Z)*R*BR + DF(BT,Z)*R*BT - DF(BZ,R)*R*BR - DF(BZ,TH)*BT)
- /R
- %showtime;
- %example 3: Taylor expansions
- on div;
- on revpri;
- vtaylor(sin(x)*cos(y)+e**z,svec(x,y,z),svec(0,0,0),svec(3,4,5));
- 1 2 1 3 1 4 1 5 1 2
- 1 + Z + ---*Z + ---*Z + ----*Z + -----*Z + X - ---*X*Y
- 2 6 24 120 2
- 1 4 1 3 1 3 2 1 3 4
- + ----*X*Y - ---*X + ----*X *Y - -----*X *Y
- 24 6 12 144
- vtaylor(sin(x)/x,x,0,5);
- 1 2 1 4
- 1 - ---*X + -----*X
- 6 120
- te:=vtaylor(svec(x/sin(x),(e**y-1)/y,(1+z)**10),svec(x,y,z),
- svec(0,0,0),5);
- 2 4
- 360 + 60*X + 7*X
- TE := [--------------------,
- 360
- 2 3 4 5
- 720 + 360*Y + 120*Y + 30*Y + 6*Y + Y 2
- ------------------------------------------,1 + 10*Z + 45*Z
- 720
- 3 4 5
- + 120*Z + 210*Z + 252*Z ]
- %showtime;
- %example 4: extract components
- eom _2;
- -1 -1 -1
- - R *BR*BT + R *VR*VT + DF(BZ,TH)*R *BZ - DF(BT,Z)*BZ
- -1 -1
- - DF(BT,R)*BR + DF(BR,TH)*R *BR + DF(VT,TH)*R *VT + DF(VT,Z)*VZ
- -1
- + DF(VT,R)*VR + DF(P,TH)*R
- te _1;
- 1 2 7 4
- 1 + ---*X + -----*X
- 6 360
- off div;
- off revpri;
- %showtime;
- %example 5: Line Integral
- vstart$
- Select Coordinate System by number
- 1] cartesian
- 2] cylindrical
- 3] spherical
- 4] general
- 5] others
- 1
- coordinate type = 1
- coordinates = X,Y,Z
- scale factors = 1,1,1
- dlineint(svec(3*x**2+5*y,-12*y*z,2*x*y*z**2),svec(s,s**2,s**3),s,1,2);
- 68491
- -------
- 42
- %showtime;
- %example 6: Volume Integral
- ub:=sqrt(r**2-x**2)$
- 8 * dvolint(1,svec(0,0,0),svec(r,ub,ub),6);
- 3
- 16*R
- -------
- 3
- %===========================================
- % end of test
- %===========================================
- showtime;
- Time: 7684 ms
- ;
- end;
- 4: 4:
- Quitting
- Sat Jun 29 14:15:59 PDT 1991
|