1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236 |
- Sat Jun 29 13:44:52 PDT 1991
- REDUCE 3.4, 15-Jul-91 ...
- 1: 1:
- 2: 2:
- 3: 3: % Tests of eigenfunction/eigenvalue code.
- v := mat((1,1,-1,1,0),(1,2,-1,0,1),(-1,2,3,-1,0),
- (1,-2,1,2,-1),(2,1,-1,3,0))$
- mateigen(v,et);
- 4 3 2
- {{ET - 6*ET + 13*ET + 5*ET - 5,
- 1,
- [ 5*ARBCOMPLEX(1)*(ET - 2) ]
- [ ---------------------------- ]
- [ 3 2 ]
- [ 2*ET - 10*ET + 23*ET + 5 ]
- [ ]
- [ 2 ]
- [ ARBCOMPLEX(1)*ET*( - ET + 6*ET - 8) ]
- [--------------------------------------]
- [ 3 2 ]
- [ 2*ET - 10*ET + 23*ET + 5 ]
- [ ]
- [ ARBCOMPLEX(1)*ET*( - 3*ET + 7) ]
- [ -------------------------------- ]
- [ 3 2 ]
- [ 2*ET - 10*ET + 23*ET + 5 ]
- [ ]
- [ 3 2 ]
- [ ARBCOMPLEX(1)*(ET - 4*ET + 10) ]
- [ ---------------------------------- ]
- [ 3 2 ]
- [ 2*ET - 10*ET + 23*ET + 5 ]
- [ ]
- [ ARBCOMPLEX(1) ]
- },
- {ET - 2,
- 1,
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ARBCOMPLEX(2)]
- [ ]
- [ARBCOMPLEX(2)]
- [ ]
- [ARBCOMPLEX(2)]
- }}
- eigv := third first ws$
- % Now check if the equation for the eigenvectors is fulfilled. Note
- % that also the last component is zero due to the eigenvalue equation.
- v*eigv-et*eigv;
- [ 0 ]
- [ ]
- [ 4 3 2 ]
- [ ARBCOMPLEX(1)*(ET - 6*ET + 13*ET + 5*ET - 5) ]
- [ ------------------------------------------------- ]
- [ 3 2 ]
- [ 2*ET - 10*ET + 23*ET + 5 ]
- [ ]
- [ 0 ]
- [ ]
- [ 4 3 2 ]
- [ ARBCOMPLEX(1)*( - ET + 6*ET - 13*ET - 5*ET + 5) ]
- [ ---------------------------------------------------- ]
- [ 3 2 ]
- [ 2*ET - 10*ET + 23*ET + 5 ]
- [ ]
- [ 4 3 2 ]
- [ 2*ARBCOMPLEX(1)*( - ET + 6*ET - 13*ET - 5*ET + 5) ]
- [------------------------------------------------------]
- [ 3 2 ]
- [ 2*ET - 10*ET + 23*ET + 5 ]
- % Example of degenerate eigenvalues.
- u := mat((2,-1,1),(0,1,1),(-1,1,1))$
- mateigen(u,eta);
- {{ETA - 1,2,
- [ARBCOMPLEX(3)]
- [ ]
- [ARBCOMPLEX(3)]
- [ ]
- [ 0 ]
- },
- {ETA - 2,1,
- [ 0 ]
- [ ]
- [ARBCOMPLEX(4)]
- [ ]
- [ARBCOMPLEX(4)]
- }}
- % Example of a fourfold degenerate eigenvalue with two corresponding
- % eigenvectors.
- w := mat((1,-1,1,-1),(-3,3,-5,4),(8,-4,3,-4),
- (15,-10,11,-11))$
- mateigen(w,al);
- {{AL + 1,
- 4,
- [ ARBCOMPLEX(5) ]
- [ --------------- ]
- [ 5 ]
- [ ]
- [ - 5*ARBCOMPLEX(6) + 7*ARBCOMPLEX(5) ]
- [--------------------------------------]
- [ 5 ]
- [ ]
- [ ARBCOMPLEX(5) ]
- [ ]
- [ ARBCOMPLEX(6) ]
- }}
- eigw := third first ws;
- [ ARBCOMPLEX(5) ]
- [ --------------- ]
- [ 5 ]
- [ ]
- [ - 5*ARBCOMPLEX(6) + 7*ARBCOMPLEX(5) ]
- EIGW := [--------------------------------------]
- [ 5 ]
- [ ]
- [ ARBCOMPLEX(5) ]
- [ ]
- [ ARBCOMPLEX(6) ]
- w*eigw - al*eigw;
- - ARBCOMPLEX(5)*(AL + 1)
- MAT((---------------------------),
- 5
- ((5*ARBCOMPLEX(6)*AL + 5*ARBCOMPLEX(6) - 7*ARBCOMPLEX(5)*AL
- - 7*ARBCOMPLEX(5))/5),
- ( - ARBCOMPLEX(5)*(AL + 1)),
- ( - ARBCOMPLEX(6)*(AL + 1)))
- % Calculate the eigenvectors and eigenvalue equation.
- f := mat((0,ex,ey,ez),(-ex,0,bz,-by),(-ey,-bz,0,bx),
- (-ez,by,-bx,0))$
- factor om;
- mateigen(f,om);
- 4 2 2 2 2 2 2 2 2 2
- {{OM + OM *(EX + EY + EZ + BZ + BY + BX ) + EX *BX
- 2 2
- + 2*EX*EY*BY*BX + 2*EX*EZ*BZ*BX + EY *BY + 2*EY*EZ*BZ*BY
- 2 2
- + EZ *BZ ,
- 1,
- 2
- MAT(((OM *ARBCOMPLEX(7)*EZ + OM*ARBCOMPLEX(7)*( - EX*BY + EY*BX)
- 3
- + ARBCOMPLEX(7)*BZ*(EX*BX + EY*BY + EZ*BZ))/(OM
- 2 2 2
- + OM*(EX + EY + BZ ))),
- 2
- (( - OM *ARBCOMPLEX(7)*BY + OM*ARBCOMPLEX(7)*( - EX*EZ + BZ*BX)
- 3
- - (ARBCOMPLEX(7)*EY)*(EX*BX + EY*BY + EZ*BZ))/(OM
- 2 2 2
- + OM*(EX + EY + BZ ))),
- 2
- ((OM *ARBCOMPLEX(7)*BX + OM*ARBCOMPLEX(7)*( - EY*EZ + BZ*BY)
- 3
- + ARBCOMPLEX(7)*EX*(EX*BX + EY*BY + EZ*BZ))/(OM
- 2 2 2
- + OM*(EX + EY + BZ ))),
- (ARBCOMPLEX(7)))
- }}
- % Specialize to perpendicular electric and magnetic field.
- let ez=0,ex=0,by=0;
- % Note that we find two eigenvectors to the double eigenvalue 0
- % (as it must be).
- mateigen(f,om);
- {{OM,
- 2,
- [ ARBCOMPLEX(9)*BX - ARBCOMPLEX(8)*BZ ]
- [-------------------------------------]
- [ EY ]
- [ ]
- [ ARBCOMPLEX(8) ]
- [ ]
- [ 0 ]
- [ ]
- [ ARBCOMPLEX(9) ]
- },
- 2 2 2 2
- {OM + EY + BZ + BX ,
- 1,
- [ - ARBCOMPLEX(10)*EY ]
- [ ---------------------- ]
- [ BX ]
- [ ]
- [ - ARBCOMPLEX(10)*BZ ]
- [ ---------------------- ]
- [ BX ]
- [ ]
- [ 2 2 2 ]
- [ ARBCOMPLEX(10)*(EY + BZ + BX ) ]
- [----------------------------------]
- [ OM*BX ]
- [ ]
- [ ARBCOMPLEX(10) ]
- }}
- % The following has 1 as a double eigenvalue. The corresponding
- % eigenvector must involve two arbitrary constants.
- j := mat((9/8,1/4,-sqrt(3)/8),
- (1/4,3/2,-sqrt(3)/4),
- (-sqrt(3)/8,-sqrt(3)/4,11/8));
- [ 9 1 - SQRT(3) ]
- [ --- --- ------------]
- [ 8 4 8 ]
- [ ]
- [ 1 3 - SQRT(3) ]
- J := [ --- --- ------------]
- [ 4 2 4 ]
- [ ]
- [ - SQRT(3) - SQRT(3) 11 ]
- [------------ ------------ ---- ]
- [ 8 4 8 ]
- mateigen(j,x);
- {{X - 1,
- 2,
- [SQRT(3)*ARBCOMPLEX(12) - 2*ARBCOMPLEX(11)]
- [ ]
- [ ARBCOMPLEX(11) ]
- [ ]
- [ ARBCOMPLEX(12) ]
- },
- {X - 2,
- 1,
- [ - SQRT(3)*ARBCOMPLEX(13) ]
- [ --------------------------- ]
- [ 3 ]
- [ ]
- [ - 2*SQRT(3)*ARBCOMPLEX(13) ]
- [-----------------------------]
- [ 3 ]
- [ ]
- [ ARBCOMPLEX(13) ]
- }}
- % The following is a good consistency check.
- sym := mat(
- (0, 1/2, 1/(2*sqrt(2)), 0, 0),
- (1/2, 0, 1/(2*sqrt(2)), 0, 0),
- (1/(2*sqrt(2)), 1/(2*sqrt(2)), 0, 1/2, 1/2),
- (0, 0, 1/2, 0, 0),
- (0, 0, 1/2, 0, 0))$
- ans := mateigen(sym,eta);
- ANS := {{ETA,
- 1,
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ - ARBCOMPLEX(14)]
- [ ]
- [ ARBCOMPLEX(14) ]
- },
- {ETA - 1,
- 1,
- [ 2*ARBCOMPLEX(15) ]
- [------------------]
- [ SQRT(2) ]
- [ ]
- [ 2*ARBCOMPLEX(15) ]
- [------------------]
- [ SQRT(2) ]
- [ ]
- [ 2*ARBCOMPLEX(15) ]
- [ ]
- [ ARBCOMPLEX(15) ]
- [ ]
- [ ARBCOMPLEX(15) ]
- },
- {2*ETA + 1,
- 1,
- [ - ARBCOMPLEX(16)]
- [ ]
- [ ARBCOMPLEX(16) ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- },
- 2
- {4*ETA + 2*ETA - 1,
- 1,
- [ - ARBCOMPLEX(17) ]
- [ ------------------- ]
- [ 2*SQRT(2)*ETA ]
- [ ]
- [ - ARBCOMPLEX(17) ]
- [ ------------------- ]
- [ 2*SQRT(2)*ETA ]
- [ ]
- [ ARBCOMPLEX(17)*( - 2*ETA + 1) ]
- [-------------------------------]
- [ 2*ETA ]
- [ ]
- [ ARBCOMPLEX(17) ]
- [ ]
- [ ARBCOMPLEX(17) ]
- }}
- % Check of correctness for this example.
- for each j in ans do
- for each k in solve(first j,eta) do
- write sub(k,sym*third j - eta*third j);
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- % Tests of nullspace operator.
- a1 := mat((1,2,3,4),(5,6,7,8));
- [1 2 3 4]
- A1 := [ ]
- [5 6 7 8]
- nullspace a1;
- {
- [ 1 ]
- [ ]
- [ 0 ]
- [ ]
- [ - 3]
- [ ]
- [ 2 ]
- ,
- [ 0 ]
- [ ]
- [ 1 ]
- [ ]
- [ - 2]
- [ ]
- [ 1 ]
- }
-
- b1 := {{1,2,3,4},{5,6,7,8}};
- B1 := {{1,2,3,4},{5,6,7,8}}
- nullspace b1;
- {{1,0,-3,2},{0,1,-2,1}}
- % Example taken from a bug report for another CA system.
- c1 :=
- {{(p1**2*(p1**2 + p2**2 + p3**2 - s*z - z**2))/(p1**2 + p3**2), 0,
- (p1*p3*(p1**2 + p2**2 + p3**2 - s*z - z**2))/(p1**2 + p3**2),
- -((p1**2*p2*(s + z))/(p1**2 + p3**2)), p1*(s + z),
- -((p1*p2*p3*(s + z))/(p1**2 + p3**2)),
- -((p1*p3*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)), 0,
- (p1**2*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)},
- {0, 0, 0, 0, 0, 0, 0, 0, 0},
- {(p1*p3*(p1**2 + p2**2 + p3**2 - s*z - z**2))/(p1**2 + p3**2), 0,
- (p3**2*(p1**2 + p2**2 + p3**2 - s*z - z**2))/(p1**2 + p3**2),
- -((p1*p2*p3*(s + z))/(p1**2 + p3**2)), p3*(s + z),
- -((p2*p3**2*(s + z))/(p1**2 + p3**2)),
- -((p3**2*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)), 0,
- (p1*p3*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)},
- {-((p1**2*p2*(s + z))/(p1**2 + p3**2)), 0,
- -((p1*p2*p3*(s + z))/(p1**2 + p3**2)),
- -((p1**2*p2**2*(s + 2*z))/((p1**2 + p3**2)*z)), (p1*p2*(s + 2*z))/z,
- -((p1*p2**2*p3*(s + 2*z))/((p1**2 + p3**2)*z)),
- -((p1*p2*p3*z)/(p1**2 + p3**2)), 0, (p1**2*p2*z)/(p1**2 + p3**2)},
- {p1*(s + z), 0, p3*(s + z), (p1*p2*(s + 2*z))/z,
- -(((p1**2+p3**2)*(s+ 2*z))/z), (p2*p3*(s + 2*z))/z, p3*z,0, -(p1*z)},
- {-((p1*p2*p3*(s + z))/(p1**2 + p3**2)), 0,
- -((p2*p3**2*(s + z))/(p1**2 + p3**2)),
- -((p1*p2**2*p3*(s + 2*z))/((p1**2 + p3**2)*z)), (p2*p3*(s + 2*z))/z,
- -((p2**2*p3**2*(s + 2*z))/((p1**2 + p3**2)*z)),
- -((p2*p3**2*z)/(p1**2 + p3**2)), 0, (p1*p2*p3*z)/(p1**2 + p3**2)},
- {-((p1*p3*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)), 0,
- -((p3**2*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)),
- -((p1*p2*p3*z)/(p1**2 + p3**2)),p3*z,-((p2*p3**2*z)/(p1**2 + p3**2)),
- -((p3**2*(p1**2 + p2**2 + p3**2)*z)/((p1**2 + p3**2)*(s + z))), 0,
- (p1*p3*(p1**2 + p2**2 + p3**2)*z)/((p1**2 + p3**2)*(s + z))},
- {0, 0, 0, 0, 0, 0, 0, 0, 0},
- {(p1**2*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2), 0,
- (p1*p3*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2),
- (p1**2*p2*z)/(p1**2 + p3**2), -(p1*z), (p1*p2*p3*z)/(p1**2 + p3**2),
- (p1*p3*(p1**2 + p2**2 + p3**2)*z)/((p1**2 + p3**2)*(s + z)), 0,
- -((p1**2*(p1**2 + p2**2 + p3**2)*z)/((p1**2 + p3**2)*(s + z)))}};
- 2 2 2 2 2
- P1 *( - S*Z - Z + P1 + P2 + P3 )
- C1 := {{-------------------------------------,
- 2 2
- P1 + P3
- 0,
- 2 2 2 2
- P1*P3*( - S*Z - Z + P1 + P2 + P3 )
- ---------------------------------------,
- 2 2
- P1 + P3
- 2
- - (P1 *P2)*(S + Z)
- ---------------------,
- 2 2
- P1 + P3
- P1*(S + Z),
- - (P1*P2*P3)*(S + Z)
- -----------------------,
- 2 2
- P1 + P3
- 2 2 2
- - (P1*P3)*(P1 + P2 + P3 )
- ------------------------------,
- 2 2
- P1 + P3
- 0,
- 2 2 2 2
- P1 *(P1 + P2 + P3 )
- -----------------------},
- 2 2
- P1 + P3
- {0,0,0,0,0,0,0,0,0},
- 2 2 2 2
- P1*P3*( - S*Z - Z + P1 + P2 + P3 )
- {---------------------------------------,
- 2 2
- P1 + P3
- 0,
- 2 2 2 2 2
- P3 *( - S*Z - Z + P1 + P2 + P3 )
- -------------------------------------,
- 2 2
- P1 + P3
- - (P1*P2*P3)*(S + Z)
- -----------------------,
- 2 2
- P1 + P3
- P3*(S + Z),
- 2
- - (P2*P3 )*(S + Z)
- ---------------------,
- 2 2
- P1 + P3
- 2 2 2 2
- - P3 *(P1 + P2 + P3 )
- --------------------------,
- 2 2
- P1 + P3
- 0,
- 2 2 2
- P1*P3*(P1 + P2 + P3 )
- -------------------------},
- 2 2
- P1 + P3
- 2
- - (P1 *P2)*(S + Z)
- {---------------------,
- 2 2
- P1 + P3
- 0,
- - (P1*P2*P3)*(S + Z)
- -----------------------,
- 2 2
- P1 + P3
- 2 2
- P1 *P2 *( - S - 2*Z)
- ----------------------,
- 2 2
- Z*(P1 + P3 )
- P1*P2*(S + 2*Z)
- -----------------,
- Z
- 2
- P1*P2 *P3*( - S - 2*Z)
- ------------------------,
- 2 2
- Z*(P1 + P3 )
- - Z*P1*P2*P3
- ---------------,
- 2 2
- P1 + P3
- 0,
- 2
- Z*P1 *P2
- -----------},
- 2 2
- P1 + P3
- {P1*(S + Z),
- 0,
- P3*(S + Z),
- P1*P2*(S + 2*Z)
- -----------------,
- Z
- 2 2 2 2
- - S*P1 - S*P3 - 2*Z*P1 - 2*Z*P3
- --------------------------------------,
- Z
- P2*P3*(S + 2*Z)
- -----------------,
- Z
- Z*P3,
- 0,
- - Z*P1},
- - (P1*P2*P3)*(S + Z)
- {-----------------------,
- 2 2
- P1 + P3
- 0,
- 2
- - (P2*P3 )*(S + Z)
- ---------------------,
- 2 2
- P1 + P3
- 2
- P1*P2 *P3*( - S - 2*Z)
- ------------------------,
- 2 2
- Z*(P1 + P3 )
- P2*P3*(S + 2*Z)
- -----------------,
- Z
- 2 2
- P2 *P3 *( - S - 2*Z)
- ----------------------,
- 2 2
- Z*(P1 + P3 )
- 2
- - Z*P2*P3
- -------------,
- 2 2
- P1 + P3
- 0,
- Z*P1*P2*P3
- ------------},
- 2 2
- P1 + P3
- 2 2 2
- - (P1*P3)*(P1 + P2 + P3 )
- {------------------------------,
- 2 2
- P1 + P3
- 0,
- 2 2 2 2
- - P3 *(P1 + P2 + P3 )
- --------------------------,
- 2 2
- P1 + P3
- - Z*P1*P2*P3
- ---------------,
- 2 2
- P1 + P3
- Z*P3,
- 2
- - Z*P2*P3
- -------------,
- 2 2
- P1 + P3
- 2 2 2 2
- - (Z*P3 )*(P1 + P2 + P3 )
- -------------------------------,
- 2 2 2 2
- S*P1 + S*P3 + Z*P1 + Z*P3
- 0,
- 2 2 2
- Z*P1*P3*(P1 + P2 + P3 )
- -------------------------------},
- 2 2 2 2
- S*P1 + S*P3 + Z*P1 + Z*P3
- {0,0,0,0,0,0,0,0,0},
- 2 2 2 2
- P1 *(P1 + P2 + P3 )
- {-----------------------,
- 2 2
- P1 + P3
- 0,
- 2 2 2
- P1*P3*(P1 + P2 + P3 )
- -------------------------,
- 2 2
- P1 + P3
- 2
- Z*P1 *P2
- -----------,
- 2 2
- P1 + P3
- - Z*P1,
- Z*P1*P2*P3
- ------------,
- 2 2
- P1 + P3
- 2 2 2
- Z*P1*P3*(P1 + P2 + P3 )
- -------------------------------,
- 2 2 2 2
- S*P1 + S*P3 + Z*P1 + Z*P3
- 0,
- 2 2 2 2
- - (Z*P1 )*(P1 + P2 + P3 )
- -------------------------------}}
- 2 2 2 2
- S*P1 + S*P3 + Z*P1 + Z*P3
- nullspace c1;
- - P1
- {{1,0,-------,0,0,0,0,0,0},
- P3
- {0,1,0,0,0,0,0,0,0},
- - P1
- {0,0,0,1,0,-------,0,0,0},
- P3
- 2 2
- P1 + P3
- {0,0,0,0,1,-----------,0,0,0},
- P2*P3
- P3
- {0,0,0,0,0,0,1,0,----},
- P1
- {0,0,0,0,0,0,0,1,0}}
-
- d1 := mat
- (((p1**2*(p1**2 + p2**2 + p3**2 - s*z - z**2))/(p1**2 + p3**2), 0,
- (p1*p3*(p1**2 + p2**2 + p3**2 - s*z - z**2))/(p1**2 + p3**2),
- -((p1**2*p2*(s + z))/(p1**2 + p3**2)), p1*(s + z),
- -((p1*p2*p3*(s + z))/(p1**2 + p3**2)),
- -((p1*p3*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)), 0,
- (p1**2*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)),
- (0, 0, 0, 0, 0, 0, 0, 0, 0),
- ((p1*p3*(p1**2 + p2**2 + p3**2 - s*z - z**2))/(p1**2 + p3**2), 0,
- (p3**2*(p1**2 + p2**2 + p3**2 - s*z - z**2))/(p1**2 + p3**2),
- -((p1*p2*p3*(s + z))/(p1**2 + p3**2)), p3*(s + z),
- -((p2*p3**2*(s + z))/(p1**2 + p3**2)),
- -((p3**2*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)), 0,
- (p1*p3*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)),
- ( ((p1**2*p2*(s + z))/(p1**2 + p3**2)), 0,
- -((p1*p2*p3*(s + z))/(p1**2 + p3**2)),
- -((p1**2*p2**2*(s + 2*z))/((p1**2 + p3**2)*z)), (p1*p2*(s + 2*z))/z,
- -((p1*p2**2*p3*(s + 2*z))/((p1**2 + p3**2)*z)),
- -((p1*p2*p3*z)/(p1**2 + p3**2)), 0, (p1**2*p2*z)/(p1**2 + p3**2)),
- (p1*(s + z), 0, p3*(s + z), (p1*p2*(s + 2*z))/z,
- -(((p1**2 + p3**2)*(s + 2*z))/z),(p2*p3*(s + 2*z))/z,p3*z,0,-(p1*z)),
- (-((p1*p2*p3*(s + z))/(p1**2 + p3**2)), 0,
- -((p2*p3**2*(s + z))/(p1**2 + p3**2)),
- -((p1*p2**2*p3*(s + 2*z))/((p1**2 + p3**2)*z)), (p2*p3*(s + 2*z))/z,
- -((p2**2*p3**2*(s + 2*z))/((p1**2 + p3**2)*z)),
- -((p2*p3**2*z)/(p1**2 + p3**2)), 0, (p1*p2*p3*z)/(p1**2 + p3**2)),
- (-((p1*p3*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)), 0,
- -((p3**2*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2)),
- -((p1*p2*p3*z)/(p1**2 + p3**2)),p3*z,-((p2*p3**2*z)/(p1**2 + p3**2)),
- -((p3**2*(p1**2 + p2**2 + p3**2)*z)/((p1**2 + p3**2)*(s + z))), 0,
- (p1*p3*(p1**2 + p2**2 + p3**2)*z)/((p1**2 + p3**2)*(s + z))),
- (0, 0, 0, 0, 0, 0, 0, 0, 0),
- ((p1**2*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2), 0,
- (p1*p3*(p1**2 + p2**2 + p3**2))/(p1**2 + p3**2),
- (p1**2*p2*z)/(p1**2 + p3**2), -(p1*z), (p1*p2*p3*z)/(p1**2 + p3**2),
- (p1*p3*(p1**2 + p2**2 + p3**2)*z)/((p1**2 + p3**2)*(s + z)), 0,
- -((p1**2*(p1**2 + p2**2 + p3**2)*z)/((p1**2 + p3**2)*(s + z)))));
- 2 2 2 2 2
- P1 *( - S*Z - Z + P1 + P2 + P3 )
- D1 := MAT((-------------------------------------,0,
- 2 2
- P1 + P3
- 2 2 2 2
- P1*P3*( - S*Z - Z + P1 + P2 + P3 )
- ---------------------------------------,
- 2 2
- P1 + P3
- 2
- - (P1 *P2)*(S + Z) - (P1*P2*P3)*(S + Z)
- ---------------------,P1*(S + Z),-----------------------,
- 2 2 2 2
- P1 + P3 P1 + P3
- 2 2 2 2 2 2 2
- - (P1*P3)*(P1 + P2 + P3 ) P1 *(P1 + P2 + P3 )
- ------------------------------,0,-----------------------),
- 2 2 2 2
- P1 + P3 P1 + P3
- (0,0,0,0,0,0,0,0,0),
- 2 2 2 2
- P1*P3*( - S*Z - Z + P1 + P2 + P3 )
- (---------------------------------------,0,
- 2 2
- P1 + P3
- 2 2 2 2 2
- P3 *( - S*Z - Z + P1 + P2 + P3 )
- -------------------------------------,
- 2 2
- P1 + P3
- 2
- - (P1*P2*P3)*(S + Z) - (P2*P3 )*(S + Z)
- -----------------------,P3*(S + Z),---------------------,
- 2 2 2 2
- P1 + P3 P1 + P3
- 2 2 2 2 2 2 2
- - P3 *(P1 + P2 + P3 ) P1*P3*(P1 + P2 + P3 )
- --------------------------,0,-------------------------),
- 2 2 2 2
- P1 + P3 P1 + P3
- 2
- P1 *P2*(S + Z) - (P1*P2*P3)*(S + Z)
- (----------------,0,-----------------------,
- 2 2 2 2
- P1 + P3 P1 + P3
- 2 2
- P1 *P2 *( - S - 2*Z) P1*P2*(S + 2*Z)
- ----------------------,-----------------,
- 2 2 Z
- Z*(P1 + P3 )
- 2 2
- P1*P2 *P3*( - S - 2*Z) - Z*P1*P2*P3 Z*P1 *P2
- ------------------------,---------------,0,-----------),
- 2 2 2 2 2 2
- Z*(P1 + P3 ) P1 + P3 P1 + P3
- P1*P2*(S + 2*Z)
- (P1*(S + Z),0,P3*(S + Z),-----------------,
- Z
- 2 2 2 2
- - S*P1 - S*P3 - 2*Z*P1 - 2*Z*P3 P2*P3*(S + 2*Z)
- --------------------------------------,-----------------,
- Z Z
- Z*P3,0, - Z*P1),
- 2
- - (P1*P2*P3)*(S + Z) - (P2*P3 )*(S + Z)
- (-----------------------,0,---------------------,
- 2 2 2 2
- P1 + P3 P1 + P3
- 2
- P1*P2 *P3*( - S - 2*Z) P2*P3*(S + 2*Z)
- ------------------------,-----------------,
- 2 2 Z
- Z*(P1 + P3 )
- 2 2 2
- P2 *P3 *( - S - 2*Z) - Z*P2*P3 Z*P1*P2*P3
- ----------------------,-------------,0,------------),
- 2 2 2 2 2 2
- Z*(P1 + P3 ) P1 + P3 P1 + P3
- 2 2 2
- - (P1*P3)*(P1 + P2 + P3 )
- (------------------------------,0,
- 2 2
- P1 + P3
- 2 2 2 2
- - P3 *(P1 + P2 + P3 ) - Z*P1*P2*P3
- --------------------------,---------------,Z*P3,
- 2 2 2 2
- P1 + P3 P1 + P3
- 2 2 2 2 2
- - Z*P2*P3 - (Z*P3 )*(P1 + P2 + P3 )
- -------------,-------------------------------,0,
- 2 2 2 2 2 2
- P1 + P3 S*P1 + S*P3 + Z*P1 + Z*P3
- 2 2 2
- Z*P1*P3*(P1 + P2 + P3 )
- -------------------------------),
- 2 2 2 2
- S*P1 + S*P3 + Z*P1 + Z*P3
- (0,0,0,0,0,0,0,0,0),
- 2 2 2 2 2 2 2
- P1 *(P1 + P2 + P3 ) P1*P3*(P1 + P2 + P3 )
- (-----------------------,0,-------------------------,
- 2 2 2 2
- P1 + P3 P1 + P3
- 2
- Z*P1 *P2 Z*P1*P2*P3
- -----------, - Z*P1,------------,
- 2 2 2 2
- P1 + P3 P1 + P3
- 2 2 2
- Z*P1*P3*(P1 + P2 + P3 )
- -------------------------------,0,
- 2 2 2 2
- S*P1 + S*P3 + Z*P1 + Z*P3
- 2 2 2 2
- - (Z*P1 )*(P1 + P2 + P3 )
- -------------------------------))
- 2 2 2 2
- S*P1 + S*P3 + Z*P1 + Z*P3
- nullspace d1;
- {
- [0]
- [ ]
- [1]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- ,
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 1 ]
- [ ]
- [ 0 ]
- [ ]
- [ - P1 ]
- [-------]
- [ P3 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- ,
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 1 ]
- [ ]
- [ 2 2 ]
- [ P1 + P3 ]
- [-----------]
- [ P2*P3 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- ,
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 0 ]
- [ ]
- [ 1 ]
- [ ]
- [ 0 ]
- [ ]
- [ P3 ]
- [----]
- [ P1 ]
- ,
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [1]
- [ ]
- [0]
- }
- % The following example, by Kenton Yee, was discussed extensively by
- % the sci.math.symbolic newsgroup.
- m := mat((e^(-1), e^(-1), e^(-1), e^(-1), e^(-1), e^(-1), e^(-1), 0),
- (1, 1, 1, 1, 1, 1, 0, 1),(1, 1, 1, 1, 1, 0, 1, 1),
- (1, 1, 1, 1, 0, 1, 1, 1),(1, 1, 1, 0, 1, 1, 1, 1),
- (1, 1, 0, 1, 1, 1, 1, 1),(1, 0, 1, 1, 1, 1, 1, 1),
- (0, e, e, e, e, e, e, e));
- [ 1 1 1 1 1 1 1 ]
- [--- --- --- --- --- --- --- 0]
- [ E E E E E E E ]
- [ ]
- [ 1 1 1 1 1 1 0 1]
- [ ]
- [ 1 1 1 1 1 0 1 1]
- [ ]
- M := [ 1 1 1 1 0 1 1 1]
- [ ]
- [ 1 1 1 0 1 1 1 1]
- [ ]
- [ 1 1 0 1 1 1 1 1]
- [ ]
- [ 1 0 1 1 1 1 1 1]
- [ ]
- [ 0 E E E E E E E]
- eig := mateigen(m,x);
- EIG := {{X - 1,
- 3,
- [ 0 ]
- [ ]
- [ - ARBCOMPLEX(20)]
- [ ]
- [ - ARBCOMPLEX(19)]
- [ ]
- [ - ARBCOMPLEX(18)]
- [ ]
- [ ARBCOMPLEX(18) ]
- [ ]
- [ ARBCOMPLEX(19) ]
- [ ]
- [ ARBCOMPLEX(20) ]
- [ ]
- [ 0 ]
- },
- {X + 1,
- 3,
- ARBCOMPLEX(23)
- MAT((----------------),
- E
- (ARBCOMPLEX(22)),
- (ARBCOMPLEX(21)),
- (( - ARBCOMPLEX(23)*E - ARBCOMPLEX(23)
- - 2*ARBCOMPLEX(22)*E - 2*ARBCOMPLEX(21)*E)/(2*E)),
- (( - ARBCOMPLEX(23)*E - ARBCOMPLEX(23)
- - 2*ARBCOMPLEX(22)*E - 2*ARBCOMPLEX(21)*E)/(2*E)),
- (ARBCOMPLEX(21)),
- (ARBCOMPLEX(22)),
- (ARBCOMPLEX(23)))
- },
- 2 2
- { - E *X + E*X - 6*E*X + 7*E - X,
- 1,
- 8 7 7 6
- MAT(((6*ARBCOMPLEX(24)*(E *X + 23*E *X - 7*E + 179*E *X
- 6 5 5 4 4
- - 119*E + 565*E *X - 581*E + 768*E *X - 890*E
- 3 3 2 2
- + 565*E *X - 581*E + 179*E *X - 119*E + 23*E*X
- 3 8 7 7 6
- - 7*E + X))/(E *(E *X + 30*E *X - 7*E + 333*E *X
- 6 5 5 4
- - 168*E + 1692*E *X - 1365*E + 4023*E *X
- 4 3 3 2
- - 4368*E + 4470*E *X - 5145*E + 2663*E *X
- 2
- - 2520*E + 576*E*X - 251*E + 36*X))),
- 9 8 8 7
- ((ARBCOMPLEX(24)*(E *X + 29*E *X - 7*E + 310*E *X
- 7 6 6 5
- - 161*E + 1520*E *X - 1246*E + 3577*E *X
- 5 4 4 3
- - 3836*E + 4283*E *X - 4795*E + 2988*E *X
- 3 2 2
- - 3065*E + 978*E *X - 672*E + 132*E*X - 42*E
- 2 8 7 7 6
- + 6*X))/(E *(E *X + 30*E *X - 7*E + 333*E *X
- 6 5 5 4
- - 168*E + 1692*E *X - 1365*E + 4023*E *X
- 4 3 3 2
- - 4368*E + 4470*E *X - 5145*E + 2663*E *X
- 2
- - 2520*E + 576*E*X - 251*E + 36*X))),
- 9 8 8 7
- ((ARBCOMPLEX(24)*(E *X + 29*E *X - 7*E + 310*E *X
- 7 6 6 5
- - 161*E + 1520*E *X - 1246*E + 3577*E *X
- 5 4 4 3
- - 3836*E + 4283*E *X - 4795*E + 2988*E *X
- 3 2 2
- - 3065*E + 978*E *X - 672*E + 132*E*X - 42*E
- 2 8 7 7 6
- + 6*X))/(E *(E *X + 30*E *X - 7*E + 333*E *X
- 6 5 5 4
- - 168*E + 1692*E *X - 1365*E + 4023*E *X
- 4 3 3 2
- - 4368*E + 4470*E *X - 5145*E + 2663*E *X
- 2
- - 2520*E + 576*E*X - 251*E + 36*X))),
- 9 8 8 7
- ((ARBCOMPLEX(24)*(E *X + 29*E *X - 7*E + 310*E *X
- 7 6 6 5
- - 161*E + 1520*E *X - 1246*E + 3577*E *X
- 5 4 4 3
- - 3836*E + 4283*E *X - 4795*E + 2988*E *X
- 3 2 2
- - 3065*E + 978*E *X - 672*E + 132*E*X - 42*E
- 2 8 7 7 6
- + 6*X))/(E *(E *X + 30*E *X - 7*E + 333*E *X
- 6 5 5 4
- - 168*E + 1692*E *X - 1365*E + 4023*E *X
- 4 3 3 2
- - 4368*E + 4470*E *X - 5145*E + 2663*E *X
- 2
- - 2520*E + 576*E*X - 251*E + 36*X))),
- 9 8 8 7
- ((ARBCOMPLEX(24)*(E *X + 29*E *X - 7*E + 310*E *X
- 7 6 6 5
- - 161*E + 1520*E *X - 1246*E + 3577*E *X
- 5 4 4 3
- - 3836*E + 4283*E *X - 4795*E + 2988*E *X
- 3 2 2
- - 3065*E + 978*E *X - 672*E + 132*E*X - 42*E
- 2 8 7 7 6
- + 6*X))/(E *(E *X + 30*E *X - 7*E + 333*E *X
- 6 5 5 4
- - 168*E + 1692*E *X - 1365*E + 4023*E *X
- 4 3 3 2
- - 4368*E + 4470*E *X - 5145*E + 2663*E *X
- 2
- - 2520*E + 576*E*X - 251*E + 36*X))),
- 9 8 8 7
- ((ARBCOMPLEX(24)*(E *X + 29*E *X - 7*E + 310*E *X
- 7 6 6 5
- - 161*E + 1520*E *X - 1246*E + 3577*E *X
- 5 4 4 3
- - 3836*E + 4283*E *X - 4795*E + 2988*E *X
- 3 2 2
- - 3065*E + 978*E *X - 672*E + 132*E*X - 42*E
- 2 8 7 7 6
- + 6*X))/(E *(E *X + 30*E *X - 7*E + 333*E *X
- 6 5 5 4
- - 168*E + 1692*E *X - 1365*E + 4023*E *X
- 4 3 3 2
- - 4368*E + 4470*E *X - 5145*E + 2663*E *X
- 2
- - 2520*E + 576*E*X - 251*E + 36*X))),
- 9 8 8 7
- ((ARBCOMPLEX(24)*(E *X + 29*E *X - 7*E + 310*E *X
- 7 6 6 5
- - 161*E + 1520*E *X - 1246*E + 3577*E *X
- 5 4 4 3
- - 3836*E + 4283*E *X - 4795*E + 2988*E *X
- 3 2 2
- - 3065*E + 978*E *X - 672*E + 132*E*X - 42*E
- 2 8 7 7 6
- + 6*X))/(E *(E *X + 30*E *X - 7*E + 333*E *X
- 6 5 5 4
- - 168*E + 1692*E *X - 1365*E + 4023*E *X
- 4 3 3 2
- - 4368*E + 4470*E *X - 5145*E + 2663*E *X
- 2
- - 2520*E + 576*E*X - 251*E + 36*X))),
- (ARBCOMPLEX(24)))
- }}
- % Now check the eigenvectors and calculate the eigenvalues in the
- % respective eigenspaces:
- factor expt;
- for each eispace in eig do
- begin scalar eivaleq,eival,eivec;
- eival := solve(first eispace,x);
- for each soln in eival do
- <<eival := rhs soln;
- eivec := third eispace;
- eivec := sub(soln,eivec);
- write "eigenvalue = ", eival;
- write "check of eigen equation: ",
- m*eivec - eival*eivec>>
- end;
- eigenvalue = 1
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- eigenvalue = -1
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- 4 3 2 2
- SQRT(E + 12*E + 10*E + 12*E + 1) + E + 6*E + 1
- eigenvalue = ----------------------------------------------------
- 2*E
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- 4 3 2 2
- - SQRT(E + 12*E + 10*E + 12*E + 1) + E + 6*E + 1
- eigenvalue = -------------------------------------------------------
- 2*E
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- % For the special choice:
- let e = -7 + sqrt 48;
- % we get only 7 eigenvectors.
- eig := mateigen(m,x);
- EIG := {{X + 1,
- 4,
- ARBCOMPLEX(27)
- MAT((----------------),
- 4*SQRT(3) - 7
- (ARBCOMPLEX(26)),
- (ARBCOMPLEX(25)),
- ((2*SQRT(3)*( - ARBCOMPLEX(27) - 2*ARBCOMPLEX(26)
- - 2*ARBCOMPLEX(25)) + 3*ARBCOMPLEX(27)
- + 7*ARBCOMPLEX(26) + 7*ARBCOMPLEX(25))/(4*SQRT(3) - 7
- )),
- ((2*SQRT(3)*( - ARBCOMPLEX(27) - 2*ARBCOMPLEX(26)
- - 2*ARBCOMPLEX(25)) + 3*ARBCOMPLEX(27)
- + 7*ARBCOMPLEX(26) + 7*ARBCOMPLEX(25))/(4*SQRT(3) - 7
- )),
- (ARBCOMPLEX(25)),
- (ARBCOMPLEX(26)),
- (ARBCOMPLEX(27)))
- },
- {X - 1,
- 3,
- [ 0 ]
- [ ]
- [ - ARBCOMPLEX(30)]
- [ ]
- [ - ARBCOMPLEX(29)]
- [ ]
- [ - ARBCOMPLEX(28)]
- [ ]
- [ ARBCOMPLEX(28) ]
- [ ]
- [ ARBCOMPLEX(29) ]
- [ ]
- [ ARBCOMPLEX(30) ]
- [ ]
- [ 0 ]
- },
- {X + 7,
- 1,
- [ ARBCOMPLEX(31) ]
- [ ----------------- ]
- [ 56*SQRT(3) - 97 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(31) + 24*ARBCOMPLEX(31) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) - 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(31) + 24*ARBCOMPLEX(31) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) - 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(31) + 24*ARBCOMPLEX(31) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) - 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(31) + 24*ARBCOMPLEX(31) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) - 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(31) + 24*ARBCOMPLEX(31) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) - 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(31) + 24*ARBCOMPLEX(31) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) - 291 ]
- [ ]
- [ ARBCOMPLEX(31) ]
- }}
- for each eispace in eig do
- begin scalar eivaleq,eival,eivec;
- eival := solve(first eispace,x);
- for each soln in eival do
- <<eival := rhs soln;
- eivec := third eispace;
- eivec := sub(soln,eivec);
- write "eigenvalue = ", eival;
- write "check of eigen equation: ",
- m*eivec - eival*eivec>>
- end;
- eigenvalue = -1
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- eigenvalue = 1
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- eigenvalue = -7
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- % The same behaviour for this choice of e.
- clear e;
- let e = -7 - sqrt 48;
- % we get only 7 eigenvectors.
- eig := mateigen(m,x);
- EIG := {{X + 1,
- 4,
- - ARBCOMPLEX(34)
- MAT((-------------------),
- 4*SQRT(3) + 7
- (ARBCOMPLEX(33)),
- (ARBCOMPLEX(32)),
- ((2*SQRT(3)*( - ARBCOMPLEX(34) - 2*ARBCOMPLEX(33)
- - 2*ARBCOMPLEX(32)) - 3*ARBCOMPLEX(34)
- - 7*ARBCOMPLEX(33) - 7*ARBCOMPLEX(32))/(4*SQRT(3) + 7
- )),
- ((2*SQRT(3)*( - ARBCOMPLEX(34) - 2*ARBCOMPLEX(33)
- - 2*ARBCOMPLEX(32)) - 3*ARBCOMPLEX(34)
- - 7*ARBCOMPLEX(33) - 7*ARBCOMPLEX(32))/(4*SQRT(3) + 7
- )),
- (ARBCOMPLEX(32)),
- (ARBCOMPLEX(33)),
- (ARBCOMPLEX(34)))
- },
- {X - 1,
- 3,
- [ 0 ]
- [ ]
- [ - ARBCOMPLEX(37)]
- [ ]
- [ - ARBCOMPLEX(36)]
- [ ]
- [ - ARBCOMPLEX(35)]
- [ ]
- [ ARBCOMPLEX(35) ]
- [ ]
- [ ARBCOMPLEX(36) ]
- [ ]
- [ ARBCOMPLEX(37) ]
- [ ]
- [ 0 ]
- },
- {X + 7,
- 1,
- [ - ARBCOMPLEX(38) ]
- [ ------------------- ]
- [ 56*SQRT(3) + 97 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(38) - 24*ARBCOMPLEX(38) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) + 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(38) - 24*ARBCOMPLEX(38) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) + 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(38) - 24*ARBCOMPLEX(38) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) + 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(38) - 24*ARBCOMPLEX(38) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) + 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(38) - 24*ARBCOMPLEX(38) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) + 291 ]
- [ ]
- [ - 14*SQRT(3)*ARBCOMPLEX(38) - 24*ARBCOMPLEX(38) ]
- [--------------------------------------------------]
- [ 168*SQRT(3) + 291 ]
- [ ]
- [ ARBCOMPLEX(38) ]
- }}
- for each eispace in eig do
- begin scalar eivaleq,eival,eivec;
- eival := solve(first eispace,x);
- for each soln in eival do
- <<eival := rhs soln;
- eivec := third eispace;
- eivec := sub(soln,eivec);
- write "eigenvalue = ", eival;
- write "check of eigen equation: ",
- m*eivec - eival*eivec>>
- end;
- eigenvalue = -1
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- eigenvalue = 1
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- eigenvalue = -7
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- % For this choice of values
- clear e;
- let e = 1;
- % the eigenvalue 1 becomes 4-fold degenerate. However, we get a complete
- % span of 8 eigenvectors.
- eig := mateigen(m,x);
- EIG := {{X - 1,
- 4,
- [ - ARBCOMPLEX(42)]
- [ ]
- [ - ARBCOMPLEX(41)]
- [ ]
- [ - ARBCOMPLEX(40)]
- [ ]
- [ - ARBCOMPLEX(39)]
- [ ]
- [ ARBCOMPLEX(39) ]
- [ ]
- [ ARBCOMPLEX(40) ]
- [ ]
- [ ARBCOMPLEX(41) ]
- [ ]
- [ ARBCOMPLEX(42) ]
- },
- {X + 1,
- 3,
- [ ARBCOMPLEX(45) ]
- [ ]
- [ ARBCOMPLEX(44) ]
- [ ]
- [ ARBCOMPLEX(43) ]
- [ ]
- [ - (ARBCOMPLEX(45) + ARBCOMPLEX(44) + ARBCOMPLEX(43))]
- [ ]
- [ - (ARBCOMPLEX(45) + ARBCOMPLEX(44) + ARBCOMPLEX(43))]
- [ ]
- [ ARBCOMPLEX(43) ]
- [ ]
- [ ARBCOMPLEX(44) ]
- [ ]
- [ ARBCOMPLEX(45) ]
- },
- {X - 7,
- 1,
- [ARBCOMPLEX(46)]
- [ ]
- [ARBCOMPLEX(46)]
- [ ]
- [ARBCOMPLEX(46)]
- [ ]
- [ARBCOMPLEX(46)]
- [ ]
- [ARBCOMPLEX(46)]
- [ ]
- [ARBCOMPLEX(46)]
- [ ]
- [ARBCOMPLEX(46)]
- [ ]
- [ARBCOMPLEX(46)]
- }}
- for each eispace in eig do
- begin scalar eivaleq,eival,eivec;
- eival := solve(first eispace,x);
- for each soln in eival do
- <<eival := rhs soln;
- eivec := third eispace;
- eivec := sub(soln,eivec);
- write "eigenvalue = ", eival;
- write "check of eigen equation: ",
- m*eivec - eival*eivec>>
- end;
- eigenvalue = 1
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- eigenvalue = -1
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- eigenvalue = 7
- check of eigen equation:
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- [ ]
- [0]
- ma := mat((1,a),(0,b));
- [1 A]
- MA := [ ]
- [0 B]
- % case 1:
- let a = 0;
- mateigen(ma,x);
- {{X - 1,1,
- [ARBCOMPLEX(47)]
- [ ]
- [ 0 ]
- },
- { - B + X,1,
- [ 0 ]
- [ ]
- [ARBCOMPLEX(48)]
- }}
- % case 2:
- clear a;
- let a = 0, b = 1;
- mateigen(ma,x);
- {{X - 1,2,
- [ARBCOMPLEX(49)]
- [ ]
- [ARBCOMPLEX(50)]
- }}
- % case 3:
- clear a,b;
-
- mateigen(ma,x);
- {{ - B + X,
- 1,
- [ ARBCOMPLEX(51)*A ]
- [------------------]
- [ B - 1 ]
- [ ]
- [ ARBCOMPLEX(51) ]
- },
- {X - 1,1,
- [ARBCOMPLEX(52)]
- [ ]
- [ 0 ]
- }}
- % case 4:
- let b = 1;
-
- mateigen(ma,x);
- {{X - 1,2,
- [ARBCOMPLEX(53)]
- [ ]
- [ 0 ]
- }}
- end;
- 4: 4:
- Quitting
- Sat Jun 29 13:45:44 PDT 1991
|