123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475 |
- Sat Jun 29 13:47:50 PDT 1991
- REDUCE 3.4, 15-Jul-91 ...
- 1: 1:
- 2: 2:
- 3: 3: % Tests of limits package.
- limit(sin(x)/x,x,0);
- 1
- limit(sin(x)^2/x,x,0);
- 0
- limit(sin(x)/x,x,1);
- SIN(1)
- limit(1/x,x,0);
- INFINITY
- limit(-1/x,x,0);
- - INFINITY
- limit((sin(x)-x)/x^3,x,0);
- - 1
- ------
- 6
- limit(x*sin(1/x),x,infinity);
- 1
- limit(sin x/x^2,x,0);
- INFINITY
- limit(x^2*sin(1/x),x,infinity);
- INFINITY
- % Simple examples from Schaum's Theory & Problems of Advanced Calculus
- limit(x^2-6x+4,x,2);
- -4
- limit((x+3)*(2x-1)/(x^2+3x-2),x,-1);
- 3
- ---
- 2
- limit((sqrt(4+h)-2)/h,h,0);
- 1
- ---
- 4
- limit((sqrt(x)-2)/(4-x),x,4);
- - 1
- ------
- 4
- limit((x^2-4)/(x-2),x,2);
- 4
- limit(1/(2x-5),x,-1);
- - 1
- ------
- 7
- limit(sqrt(x)/(x+1),x,1);
- 1
- ---
- 2
- limit((2x+5)/(3x-2),x,infinity);
- 2
- ---
- 3
- limit((1/(x+3)-2/(3x+5))/(x-1),x,1);
- 1
- ----
- 32
- limit(sin(3x)/x,x,0);
- 3
- limit((1-cos(x))/x^2,x,0);
- 1
- ---
- 2
- limit((6x-sin(2x))/(2x+3*sin(4x)),x,0);
- 2
- ---
- 7
- limit((1-2*cos(x)+cos(2x))/x^2,x,0);
- -1
- limit((3*sin(pi*x) - sin(3*pi*x))/x^3,x,0);
- 3
- 4*PI
- limit((cos(a*x)-cos(b*x))/x^2,x,0);
- 2 2
- - A + B
- ------------
- 2
- limit((e^x-1)/x,x,0);
- 1
- limit((a^x-b^x)/x,x,0);
- LOG(A) - LOG(B)
- % Examples taken from Hyslop's Real Variable
- limit(sinh(2x)^2/log(1+x^2),x,0);
- 4
- limit(x^2*(e^(1/x)-1)*(log(x+2)-log(x)),x,infinity);
- 2
- limit(x^alpha*log(x+1)^2/log(x),x,infinity);
- FAILED
- %% fails because answer depends in essential way on parameter.
- limit((2*cosh(x)-2-x^2)/log(1+x^2)^2,x,0);
- 1
- ----
- 12
- limit((x*sinh(x)-2+2*cosh(x))/(x^4+2*x^2),x,0);
- 1
- limit((2*sinh(x)-tanh(x))/(e^x-1),x,0);
- 1
- limit(x*tanh(x)/(sqrt(1-x^2)-1),x,0);
- -2
- limit((2*log(1+x)+x^2-2*x)/x^3,x,0);
- 2
- ---
- 3
- limit((e^(5*x)-2*x)^(1/x),x,0);
- 3
- E
- limit(log(log(x))/log(x)^2,x,infinity);
- 0
- % These are adapted from Lession 4 from Stoutmyer
- limit((e^x-1)/x, x, 0);
- 1
- limit(((1-x)/log(x))**2, x, 1);
- 1
- limit(x/(e**x-1), x, 0);
- 1
- %% One sided limits
- limit!+(sin(x)/sqrt(x),x,0);
- 0
- limit!-(sin(x)/sqrt(x),x,0);
- 0
- limit(x/log x,x,0);
- 0
- limit(log(1 + x)/log x,x,infinity);
- 1
- limit(log x/sqrt x,x,infinity);
- 0
- limit!+(sqrt x/sin x,x,0);
- INFINITY
- limit(log x,x,0);
- - INFINITY
- limit(x*log x,x,0);
- 0
- limit(log x/log(2x),x,0);
- 1
- limit(log x*log(1+x)*(1+x),x,0);
- 0
- limit(log x/x,x,infinity);
- 0
- limit(log x/sqrt x,x,infinity);
- 0
- limit(log x,x,infinity);
- INFINITY
- limit(log(x+1)/sin x,x,0);
- 1
- limit(log(1+1/x)*sin x,x,0);
- 0
- limit(-log(1+x)*(x+2)/sin x,x,0);
- -2
- limit(-log x*(3+x)/log(2x),x,0);
- -3
- limit(log(x+1)^2/sqrt x,x,infinity);
- 0
- limit(log(x + 1) - log x,x,infinity);
- 0
- limit(-(log x)^2/log log x,x,infinity);
- - INFINITY
- limit(log(x-1)/sin x,x,0);
- INFINITY
- %% -> INFINITY, but what should it be?
- limit!-(sqrt x/sin x,x,0);
- INFINITY
- % infinity
- limit(log x-log(2x),x,0);
- - LOG(2)
- % or any other limit!
- limit(sqrt x-sqrt(x+1),x,infinity);
- 0
- limit(sin sin x/x,x,0);
- 1
- limit!-(sin x/cos x,x,pi/2);
- INFINITY
- % this works!
- limit!+(sin x/cos x,x,pi/2);
- - INFINITY
- % so does this!
- % but limit!+(tan x,x,pi/2) fails unless tan is defined using let.
- limit(sin x/cosh x,x,infinity);
- 0
- limit(sin x/x,x,infinity);
- 0
- limit(x*sin(1/x),x,0);
- 0
- limit(exp x/((exp x + exp(-x))/2),x,infinity);
- 2
- % limit(exp x/cosh x,x,infinity); % fails in this form, but if cosh is
- %defined using let, then it works.
- limit((sin(x^2)/(x*sinh x)),x,0);
- 1
- limit(log x*sin(x^2)/(x*sinh x),x,0);
- - INFINITY
- limit(sin(x^2)/(x*sinh x*log x),x,0);
- 0
- limit(log x/log(x^2),x,0);
- 1
- ---
- 2
- limit(log(x^2)-log(x^2+8x),x,0);
- - INFINITY
- limit(log(x^2)-log(x^2+8x),x,infinity);
- 0
- limit(sqrt(x+5)-sqrt x,x,infinity);
- 0
- limit(2^(log x),x,0);
- 0
- limit((sin tan x-tan sin x)/(asin atan x-atan asin x),x,0);
- 1
- % This one has the value infinity, but fails with de L'Hospital's rule:
- limit((e+1)^(x^2)/e^x,x,infinity);
- FAILED
- showtime;
- Time: 42755 ms
- end;
- 4: 4:
- Quitting
- Sat Jun 29 13:48:36 PDT 1991
|