123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529 |
- REDUCE 3.4, 15-Jul-91 ...
- 1:
- *** ~ already defined as operator
- (PMRULES)
- % Tests of PM.
- % TESTS OF BASIC CONSTRUCTS.
- operator f, h$
- % A "literal" template.
- m(f(a),f(a));
- T
- % Not literally equal.
- m(f(a),f(b));
- %Nested operators.
- m(f(a,h(b)),f(a,h(b)));
- T
- % A "generic" template.
- m(f(a,b),f(a,?a));
- {?A->B}
- m(f(a,b),f(?a,?b));
- {?A->A,?B->B}
- % ??a takes "rest" of arguments.
- m(f(a,b),f(??a));
- {??A->[A,B]}
- % But ?a does not.
- m(f(a,b),f(?a));
- % Conditional matches.
- m(f(a,b),f(?a,?b _=(?a=?b)));
- m(f(a,a),f(?a,?b _=(?a=?b)));
- {?A->A,?B->A}
- % "plus" is symmetric.
- m(a+b+c,c+?a+?b);
- {?A->A,?B->B}
- %It is also associative.
- m(a+b+c,c+?a);
- {?A->A + B}
- % Note the effect of using multi-generic symbol is different.
- m(a+b+c,c+??c);
- {??C->[A,B]}
- %Flag h as associative.
- flag('(h),'assoc);
- m(h(a,b,d,e),h(?a,d,?b));
- {?A->H(A,B),?B->E}
- % Substitution tests.
- s(f(a,b),f(a,?b)->?b^2);
- 2
- B
- s(a+b,a+b->a*b);
- A*B
- % "associativity" is used to group a+b+c in to (a+b) + c.
- s(a+b+c,a+b->a*b);
- A*B + C
- % Only substitute top at top level.
- s(a+b+f(a+b),a+b->a*b,inf,0);
- F(A + B) + A*B
- % SIMPLE OPERATOR DEFINITIONS.
- % Numerical factorial.
- operator nfac$
- s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)},1);
- 3*NFAC(2)
- s(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)},2);
- 6*NFAC(1)
- si(nfac(3),{nfac(0)->1,nfac(?x)->?x*nfac(?x-1)});
- 6
- % General factorial.
- operator gamma,fac;
- fac(?x _=Natp(?x)) ::- ?x*fac(?x-1);
- HOLD(?X*FAC(?X - 1))
- fac(0) :- 1;
- 1
- fac(?x) :- Gamma(?x+1);
- GAMMA(?X + 1)
- fac(3);
- 6
- fac(3/2);
- 5
- GAMMA(---)
- 2
- % Legendre polynomials in ?x of order ?n, ?n a natural number.
- operator legp;
- legp(?x,0) :- 1;
- 1
- legp(?x,1) :- ?x;
- ?X
- legp(?x,?n _=natp(?n))
- ::- ((2*?n-1)*?x*legp(?x,?n-1)-(?n-1)*legp(?x,?n-2))/?n;
- (2*?N - 1)*?X*LEGP(?X,?N - 1) - (?N - 1)*LEGP(?X,?N - 2)
- HOLD(----------------------------------------------------------)
- ?N
- legp(z,5);
- 4 2
- Z*(63*Z - 70*Z + 15)
- ------------------------
- 8
- legp(a+b,3);
- 3 2 2 3
- 5*A + 15*A *B + 15*A*B - 3*A + 5*B - 3*B
- ---------------------------------------------
- 2
- legp(x,y);
- LEGP(X,Y)
- % TESTS OF EXTENSIONS TO BASIC PATTERN MATCHER.
- comment *: MSet[?exprn,?val] or ?exprn ::: ?val
- assigns the value ?val to the projection ?exprn in such a way
- as to store explicitly each form of ?exprn requested. *;
-
- Nosimp('mset,(t t));
- Newtok '((!: !: !: !-) Mset);
- infix :::-;
- precedence Mset,RSetd;
- ?exprn :::- ?val ::- (?exprn ::- (?exprn :- ?val ));
- HOLD(?EXPRN::-(?EXPRN:-?VAL))
- scs := sin(?x)^2 + Cos(?x)^2 -> 1;
- 2 2
- SCS := SIN(?X) + COS(?X) ->1
- % The following pattern substitutes the rule sin^2 + cos^2 into a sum of
- % such terms. For 2n terms (ie n sin and n cos) the pattern has a worst
- % case complexity of O(n^3).
- operator trig,u;
- trig(?i) :::- Ap(+, Ar(?i,sin(u(?1))^2+Cos(u(?1))^2));
- 2 2
- HOLD(TRIG(?I):-AP(PLUS,AR(?I,SIN(U(?1)) + COS(U(?1)) )))
- if si(trig 1,scs) = 1 then write("Pm ok") else Write("PM failed");
- Pm ok
- if si(trig 10,scs) = 10 then write("Pm ok") else Write("PM failed");
- Pm ok
- % The next one takes about 70 seconds on an HP 9000/350, calling UNIFY
- % 1927 times.
- % if si(trig 50,scs) = 50 then write("Pm ok") else Write("PM failed");
- % Hypergeometric Function simplification.
- newtok '((!#) !#);
- *** # redefined
- flag('(#), 'symmetric);
- operator #,@,ghg;
- xx := ghg(4,3,@(a,b,c,d),@(d,1+a-b,1+a-c),1);
- XX := GHG(4,3,@(A,B,C,D),@(D,A - B + 1,A - C + 1),1)
- S(xx,sghg(3));
- *** SGHG declared operator
- GHG(4,3,@(A,B,C,D),@(D,A - B + 1,A - C + 1),1)
- s(ws,sghg(2));
- GHG(4,3,@(A,B,C,D),@(D,A - B + 1,A - C + 1),1)
- yy := ghg(3,2,@(a-1,b,c/2),@((a+b)/2,c),1);
- C A + B
- YY := GHG(3,2,@(A - 1,B,---),@(-------,C),1)
- 2 2
- S(yy,sghg(1));
- C A + B
- GHG(3,2,@(A - 1,B,---),@(-------,C),1)
- 2 2
- yy := ghg(3,2,@(a-1,b,c/2),@(a/2+b/2,c),1);
- C A + B
- YY := GHG(3,2,@(A - 1,B,---),@(-------,C),1)
- 2 2
- S(yy,sghg(1));
- C A + B
- GHG(3,2,@(A - 1,B,---),@(-------,C),1)
- 2 2
- % Some Ghg theorems.
- flag('(@), 'symmetric);
- % Watson's Theorem.
- SGhg(1) := Ghg(3,2,@(?a,?b,?c),@(?d _=?d=(1+?a+?b)/2,?e _=?e=2*?c),1) ->
- Gamma(1/2)*Gamma(?c+1/2)*Gamma((1+?a+?b)/2)*Gamma((1-?a-?b)/2+?c)/
- (Gamma((1+?a)/2)*Gamma((1+?b)/2)*Gamma((1-?a)/2+?c)
- *Gamma((1-?b)/2+?c));
- SGHG(1) := GHG(3,2,@(?A,?B,?C),
- 1 + ?A + ?B
- @(?D _= ?D=-------------,?E _= ?E=2*?C),1)->(
- 2
- - ?A - ?B + 2*?C + 1 2*?C + 1
- GAMMA(-----------------------)*GAMMA(----------)
- 2 2
- ?A + ?B + 1 1
- *GAMMA(-------------)*GAMMA(---))/(
- 2 2
- - ?A + 2*?C + 1 - ?B + 2*?C + 1
- GAMMA(------------------)*GAMMA(------------------)
- 2 2
- ?A + 1 ?B + 1
- *GAMMA(--------)*GAMMA(--------))
- 2 2
- % Dixon's theorem.
- SGhg(2) := Ghg(3,2,@(?a,?b,?c),@(?d _=?d=1+?a-?b,?e _=?e=1+?a-?c),1) ->
- Gamma(1+?a/2)*Gamma(1+?a-?b)*Gamma(1+?a-?c)*Gamma(1+?a/2-?b-?c)/
- (Gamma(1+?a)*Gamma(1+?a/2-?b)*Gamma(1+?a/2-?c)*Gamma(1+?a-?b-?c));
- SGHG(2) := GHG(3,2,@(?A,?B,?C),
- @(?D _= ?D=1 + ?A - ?B,?E _= ?E=1 + ?A - ?C),1)->(
- ?A - 2*?B - 2*?C + 2 ?A + 2
- GAMMA(----------------------)*GAMMA(--------)
- 2 2
- *GAMMA(?A - ?B + 1)*GAMMA(?A - ?C + 1))/(
- ?A - 2*?B + 2 ?A - 2*?C + 2
- GAMMA(---------------)*GAMMA(---------------)
- 2 2
- *GAMMA(?A - ?B - ?C + 1)*GAMMA(?A + 1))
- SGhg(3) := Ghg(?p,?q,@(?a,??b),@(?a,??c),?z)
- -> Ghg(?p-1,?q-1,@(??b),@(??c),?z);
- SGHG(3) := GHG(?P,?Q,@(??B,?A),@(?A,??C),?Z)
- ->GHG(?P - 1,?Q - 1,@(??B),@(??C),?Z)
- SGhg(9) := Ghg(1,0,@(?a),?b,?z ) -> (1-?z)^(-?a);
- 1
- SGHG(9) := GHG(1,0,@(?A),?B,?Z)->---------------
- ?A
- ( - ?Z + 1)
- SGhg(10) := Ghg(0,0,?a,?b,?z) -> E^?z;
- ?Z
- SGHG(10) := GHG(0,0,?A,?B,?Z)->E
- SGhg(11) := Ghg(?p,?q,@(??t),@(??b),0) -> 1;
- SGHG(11) := GHG(?P,?Q,@(??T),@(??B),0)->1
- % If one of the bottom parameters is zero or a negative integer the
- % hypergeometric functions may be singular, so the presence of a
- % functions of this type causes a warning message to be printed.
- % Note it seems to have an off by one level spec., so this may need
- % changing in future.
- %
- % Reference: AS 15.1; Slater, Generalized Hypergeometric Functions,
- % Cambridge University Press,1966.
- s(Ghg(3,2,@(a,b,c),@(b,c),z),SGhg(3));
- GHG(2,1,@(A,B),@(B),Z)
- si(Ghg(3,2,@(a,b,c),@(b,c),z),{SGhg(3),Sghg(9)});
- 1
- -------------
- A
- ( - Z + 1)
- S(Ghg(3,2,@(a-1,b,c),@(a-b,a-c),1),sghg 2);
- A - 2*B - 2*C + 1 A + 1
- GAMMA(-------------------)*GAMMA(-------)*GAMMA(A - B)*GAMMA(A - C)
- 2 2
- ---------------------------------------------------------------------
- A - 2*B + 1 A - 2*C + 1
- GAMMA(-------------)*GAMMA(-------------)*GAMMA(A - B - C)*GAMMA(A)
- 2 2
- end;
- Quitting
|