123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952 |
- COMMENT ***** NOTE *****;
- % For fastloading of this package please follow these steps:
- % faslout fide1;
- % in "fide1.red";
- % faslend;
- % load "fide1"; % used to need gentran, but no longer
- % faslout fide;
- % in "fide.red"$
- % faslend;
- % For running this package the matrix, gentran, fide1 and fide packages
- % have to be loaded. However, loading fide is enough to make this
- % happen, since matrix, gentran and fide1 are automatically loaded.
- % Version 1.1 of the FIDE package is the result of porting the FIDE
- % package version 1.0.0 to REDUCE 3.4. Some addition presented in the
- % LINBAND module.
- off echo$
- load!-package 'matrix;
- %***********************************************************************
- %***** *****
- %***** P a c k a g e F I D E Ver. 1.1 17/05/1991 *****
- %***** *****
- %***********************************************************************
- %** **
- %**FInite difference method for partial Differential Equation systems **
- %** **
- %***********************************************************************
- %** (C) 1991, Richard Liska **
- %** Faculty of Nuclear Science and Physical Engineering **
- %** Technical University of Prague **
- %** Brehova 7 **
- %** 115 19 Prague 1 **
- %** Czechoslovakia **
- %** Email: Richard Liska <tjerl@cspuni12.bitnet> **
- %** **
- %** This package can be distributed through REDUCE Network Library. **
- %***********************************************************************
- % The FIDE package consists of the following modules:
- %
- % EXPRES for transforming PDES into any orthogonal coordinate system.
- % IIMET for discretization of PDES by integro-interpolation method.
- % APPROX for determining the order of approximation of difference
- % scheme
- % CHARPOL for calculation of amplification matrix and characteristic
- % polynomial of difference scheme, which are needed in Fourier
- % stability analysis.
- % HURWP for polynomial roots locating necessary in verifying the von
- % Neumann stability condition.
- % LINBAND for generating the block of FORTRAN code, which solves a
- % system of linear algebraic equations with band matrix
- % appearing quite often in difference schemes.
- %
- % These modules can also be used separately.
- %***********************************************************************
- %***** *****
- %***** M O D U L E E X P R E S *****
- %***** *****
- %***********************************************************************
- module expres$
- % Author: R. Liska
- % Program EXPRES, Version REDUCE 3.4 05/1991
- symbolic$
- global '(!*outp)$ % declarations for 3.4
- fluid '(!*wrchri orig!* posn!*)$
- %global '(!*outp orig!* posn!*)$ % declarations for 3.3
- %fluid '(!*wrchri)$
- switch wrchri$
- global '(olddimension!* dimension!* coordindx!* cyclic1!* cyclic2!*
- sfprod!* nscal!*)$
- flag('(share),'eval)$ % So that SHARE recognized by FASL.
- share olddimension!*,dimension!*,coordindx!*,cyclic1!*,cyclic2!*,
- sfprod!*,nscal!*$
- nscal!*:=0$
- put('tensor,'tag,'tens)$
- put('tensor,'fn,'tensfn)$
- put('tensor,'evfn,'expres)$
- put('tens,'prifn,'tenspri)$
- flag('(tensor),'sprifn)$
- put('tens,'setprifn,'settenspri)$
- put('tensor,'typeletfn,'tenslet)$
- symbolic procedure ptensor x$
- 'tensor$
- symbolic procedure poptensor u$
- if null u then 'tensor else nil$
- deflist('((tensor ptensor)
- (tensop poptensor)
- (df getrtypecar)
- (diff getrtypecar)
- (!& ptensor)
- (!# ptensor)
- (!? ptensor)
- (grad ptensor)
- (div ptensor)
- (lapl ptensor)
- (curl ptensor)
- (vect ptensor)
- (dyad ptensor)
- (dirdf ptensor)),'rtypefn)$
- put('cons,'rtypefn,'getrtypecons)$
- put('rcons,'evfn,'evrcons)$
- remprop('cons,'psopfn)$
- symbolic procedure getrtypecons u$
- if getrtypecar u eq 'tensor then 'tensor
- else 'rcons$
- symbolic procedure evrcons(u,v)$
- rcons cdr u$
- symbolic procedure tensor u$
- for each a in u do
- <<put(a,'rtype,'tensop)$
- put(a,'avalue,list('tensor,mktensor(0 , (0 . 1)))) >>$
- deflist('((tensor rlis)),'stat)$
- symbolic procedure tenslet(u,v,typu,b,typv)$
- if not atom u then lprie list(" Non atom tensor variable ",u)
- else if b then
- <<if not eqcar(v,'tensor) then v:= mktensor(0,
- if eqcar(v,'!*sq) then cadr v else simp!* v)$
- rmsubs()$
- put(u,'rtype,'tensop)$
- put(u,'avalue,list('tensor,v)) >>
- else
- <<remprop(u,'rtype)$
- remprop(u,'avalue) >>$
- %======================================================================
- % Data structure for tensor quantities
- % ====================================
- % (tensor nr rnk val car !*sqvar!*)
- % nr - integer, should be equal to actual nscal!*, otherwise
- % the quantity has been defined in previous coor. system
- % number of coordinate system
- % rnk - integer, 0,1,2
- % rank of the tensor
- % 0 - scalar
- % 1 - vertor
- % 2 - dyad (matrix)
- % val - value
- % s.q. for rnk = 0
- % list of s.q.s for rnk = 1
- % list of lists of s.q.s for rnk = 2
- % !*sqvar!* used in resimplification routine
- %======================================================================
- % Smacro definitions for access of data structure subparts
- %======================================================================
- smacro procedure tensrnk u$
- % determines rank from cddr of datastructure
- car u$
- smacro procedure tensval u$
- % determines value from cddr of datastructure
- cadr u$
- symbolic procedure mktensor(rnk,u)$
- 'tensor . nscal!* . rnk . u . if !*resubs then !*sqvar!* else list nil$
- symbolic procedure settenspri(u,v)$
- if not atom u then lprie list(" Non-atom tensor variable ",u)
- else <<prin2!* u$
- prin2!* get('setq,'prtch)$
- tenspri v >>$
- symbolic procedure tenspri u$
- begin
- scalar rnk$
- u:=cddr u$
- rnk:=car u$
- u:=cadr u$
- if rnk=0 then
- <<pmaprin u$
- terpri!* t >>
- else if rnk=1 then
- <<tenspri1 u$
- orig!*:=0$
- terpri!* t >>
- else if rnk=2 then
- <<prin2!* " ( "$
- tenspri1 car u$
- for each i in cdr u do
- <<prin2!* " , "$
- terpri!* t$
- tenspri1 i >>$
- prin2!* " ) "$
- orig!*:=0$
- terpri!* t >>
- else lprie list(" Can't print tensor ",u," with rank ",rnk)
- end$
- symbolic procedure tenspri1 u$
- <<prin2!* " ( "$
- orig!*:=posn!*$
- pmaprin car u$
- for each i in cdr u do
- <<prin2!* " , "$
- terpri!* t$
- pmaprin i >>$
- orig!*:=orig!* - 3$
- prin2!* " ) " >>$
- symbolic procedure pmaprin u$
- maprin(!*outp:=prepsq!* u)$
- symbolic procedure updatedimen()$
- if olddimension!* = dimension!* then t
- else
- <<if dimension!* =2 then <<coordindx!* :='(2 1)$
- cyclic1!* :='(1 2)$
- cyclic2!* :='(2 1) >>
- else if dimension!* =3 then
- <<coordindx!* :='(3 2 1)$
- cyclic1!* :='(2 3 1)$
- cyclic2!* :='(3 1 2) >>
- else lprie list(" Can't handle dimension = ",dimension!*)$
- olddimension!* := dimension!* >>$
- symbolic procedure expres(expn,v)$
- express expn$
- symbolic procedure resimptens u$
- mktensor(caddr u,if caddr u=0 then resimp cadddr u
- else if caddr u=1 then for each a in cadddr u collect
- resimp a
- else if caddr u=2 then
- for each a in cadddr u collect
- for each b in a collect resimp b
- else lprie list("Can't handle tensor ",u,
- " with rank ",caddr u))$
- symbolic procedure express expn$
- begin
- scalar lst,matrx,rnk,opexpress$
- if not atom expn then go to op$
- if get(expn,'rtype) eq 'tensop and (rnk:=get(expn,'avalue)) and
- car rnk memq '(tensor tensop) and (rnk:=cadr rnk) then return
- if cadr rnk=nscal!* then
- if car cddddr rnk then rnk
- else resimptens rnk
- else lprie list(" You must rebind tensor ",expn,
- " in the new coordinate system")$
- return mktensor(0,simp!* expn)$
- op:if car expn = 'vect then return mktensor
- (1,testdim1 mapcar(cdr expn,function simp!*))
- else if car expn = 'dyad then return mktensor
- (2,testdim2 mapcar(cdr expn,function (lambda a$
- mapcar(a,function simp!*))))
- else if car expn eq 'tensor then return
- if cadr expn=nscal!* then
- if car cddddr expn then expn
- else resimptens expn
- else lprie list(" You must rebind tensor ",expn,
- " in the new coordinate system")$
- lst:=mapcar(cdr expn,function (lambda a$ cddr express a))$
- if (opexpress:=get(car expn,'express)) then
- <<rnk:=eval(opexpress . list mkquote lst)$
- return mktensor(car rnk,cadr rnk)>>$
- if get(car expn,'simpfn) then return mktensor(0,simp(
- car expn . mapcar(lst,function(lambda a$
- if car a=0 then list('!*sq,cdr a,nil)
- else typerr(expn," well formed scalar "))) ))$
- lst:=mapcar(lst,function(lambda a$
- if car a=0 then prepsq cdr a
- else typerr(expn," well formed tensor")))$
- return mktensor(0,!*k2q(car expn.lst))
- end$
- procedure testdim1 u$
- if length u=dimension!* then u
- else <<lprie "Bad number of vector components"$u>>$
- procedure testdim2 u$
- begin
- scalar x$
- if length u = dimension!* then t
- else go to er$
- x:=u$
- a:if length car u = dimension!* then t
- else go to er$
- x:=cdr x$
- if x then go to a$
- return u$
- er:lprie "Bad number of dyad components"$
- return u
- end$
- %======================================================================
- % Procedures in EXPRESS properties of operators are returning
- % (rnk val), their argument is list of (rnk val)
- symbolic procedure vectors arglist$
- for each i in arglist do
- <<put(i,'rtype,'tensop)$
- put(i,'simpfn,'simpiden)$
- put(i,'avalue,list('tensop,
- mktensor(1,reverse
- for each a in coordindx!* collect
- simp list(i,a) )) )>>$
- deflist('((vectors rlis)),'stat)$
- symbolic procedure dyads arglist$
- for each i in arglist do
- <<put(i,'rtype,'tensop)$
- put(i,'simpfn,'simpiden)$
- put(i,'avalue,list('tensop,
- mktensor(2,reverse
- for each a in coordindx!* collect
- reverse
- for each b in coordindx!* collect
- simp list(i,a,b)))) >>$
- deflist('((dyads rlis)),'stat)$
- symbolic procedure plusexpress u$
- begin
- scalar z$
- z:=car u$
- a:u:=cdr u$
- if null u then return z$
- z:=plus2ex(z,car u)$
- go to a
- end$
- put('plus,'express,'plusexpress)$
- symbolic procedure plus2ex(x,y)$
- begin
- scalar mtx,mty,slx,sly,rnk,ans,ans1$
- rnk:=tensrnk x$
- if not(rnk=tensrnk y) then lprie "Tensor mishmash"$
- if rnk=0 then return list(rnk,addsq(cadr x,cadr y))
- else if rnk=1 then
- <<slx:=tensval x$
- sly:=tensval y$
- while slx do
- <<ans:=addsq(car slx,car sly) . ans$
- slx:=cdr slx$
- sly:=cdr sly>>$
- ans:= list(1,reverse ans) >>
- else if rnk=2 then
- <<mtx:=tensval x$
- mty:=tensval y$
- while mtx do
- <<slx:=car mtx$
- sly:=car mty$
- ans1:=nil$
- while slx do
- <<ans1:=addsq(car slx,car sly) . ans1$
- slx:=cdr slx$
- sly:=cdr sly>>$
- ans:=reverse ans1 . ans$
- mtx:=cdr mtx$
- mty:=cdr mty>>$
- ans:=list(2,reverse ans) >>$
- return ans
- end$
- symbolic procedure timesexpress u$
- begin
- scalar z$
- z:=car u$
- a:u:=cdr u$
- if null u then return z$
- z:=times2ex(z,car u)$
- go to a
- end$
- put('times,'express,'timesexpress)$
- symbolic procedure times2ex(x,y)$
- begin
- scalar rnkx,rnky$
- rnkx:=tensrnk x$
- rnky:=tensrnk y$
- return
- if rnkx=0 then list(rnky,times0ex(tensval x,tensval y,rnky))
- else if rnky=0 then list(rnkx,times0ex(tensval y,tensval x,rnkx))
- else lprie " Tensor mishmash "
- end$
- symbolic procedure times0ex(x,y,rnk)$
- if rnk=0 then multsq(x,y)
- else if rnk=1 then
- for each a in y collect multsq(x,a)
- else if rnk=2 then
- for each a in y collect
- for each b in a collect multsq(x,b)
- else lprie " Tensor mishmash "$
- symbolic procedure minusexpress expn$
- timesexpress list(list(0,cons(-1,1)),car expn)$
- put('minus,'express,'minusexpress)$
- symbolic procedure differenceexpress expn$
- plusexpress list(car expn,minusexpress list cadr expn)$
- put('difference,'express,'differenceexpress)$
- symbolic procedure quotientexpress expn$
- if tensrnk cadr expn = 0 then
- times2ex(list(0,simp!* list('recip,prepsq tensval cadr expn)),
- car expn)
- else lprie " Tensor mishmash "$
- put('quotient,'express,'quotientexpress)$
- symbolic procedure exptexpress expn$
- if tensrnk car expn=0 and tensrnk cadr expn = 0 then
- list(0,simp!* list('expt,
- prepsq tensval car expn,
- prepsq tensval cadr expn))
- else lprie " Tensor mishmash "$
- put('expt,'express,'exptexpress)$
- symbolic procedure recipexpress expn$
- if tensrnk car expn = 0 then
- list(0,simp!* list('recip,
- prepsq tensval car expn))
- else lprie " Tensor mishmash "$
- put('recip,'express,'recipexpress)$
- symbolic procedure inprodexpress expn$
- begin
- scalar arg1,arg2,rnk1,rnk2$
- arg1:=tensval car expn$
- arg2:=tensval cadr expn$
- rnk1:=tensrnk car expn$
- rnk2:=tensrnk cadr expn$
- return
- if rnk1=1 then inprod1ex(arg1,arg2,rnk2)
- else if rnk1=2 then inprod2ex(arg1,arg2,rnk2)
- else lprie " Tensor mishmash "
- end$
- put('cons,'express,'inprodexpress)$
- symbolic procedure inprod1ex(x,y,rnk)$
- begin
- scalar lstx,lsty,mty,z,zz$
- lstx:=x$
- lsty:=y$
- if rnk=1 then
- <<z:=nil . 1$
- while lstx do
- <<z:=addsq(z,multsq(car lstx,car lsty))$
- lstx:=cdr lstx$
- lsty:=cdr lsty>>$
- z:=list(0,z)>>
- else if rnk=2 then
- <<z:=nil$
- lsty:=mty:=copy2(y,t)$
- while car mty do
- <<lstx:=x$
- lsty:=mty$
- zz:=nil . 1$
- while lstx do
- <<zz:=addsq(zz,multsq(car lstx,caar lsty))$
- rplaca(lsty,cdar lsty)$
- lsty:=cdr lsty$
- lstx:=cdr lstx>>$
- z:=nconc(z,list zz) >>$
- z:=list(1,z)>>
- else lprie " Tensor mishmash "$
- return z
- end$
- symbolic procedure inprod2ex(x,y,rnk)$
- begin
- scalar lstx,lsty,mtx,z,zz$
- mtx:=x$
- if rnk=1 then
- while mtx do
- <<z:=nconc(z,cdr inprod1ex(car mtx,y,1))$
- mtx:=cdr mtx>>
- else if rnk=2 then
- while mtx do
- <<z:=nconc(z,cdr inprod1ex(car mtx,copy2(y,t),2))$
- mtx:=cdr mtx>>
- else lprie " Tensor mishmash "$
- return list(rnk,z)
- end$
- symbolic procedure outexpress expn$
- begin
- scalar x,y,z$
- x:=tensval car expn$
- y:=tensval cadr expn$
- if tensrnk car expn=1 and tensrnk cadr expn=1 and null cddr expn then
- for each i in x do z:=mapcar(y,function(lambda a$
- multsq(a,i))) . z
- else lprie list(" Outer product of ",expn)$
- return list(2,reverse z)
- end$
- put('!&,'express,'outexpress)$
- flag('(!&),'tensfn)$
- symbolic procedure copy2(x,p)$
- if null x then nil else
- if p then copy2(car x,nil) . copy2(cdr x,t)
- else car x . copy2(cdr x,nil)$
- symbolic procedure listar(arg,j)$
- if j=1 then car arg
- else if j=2 then cadr arg
- else if j=3 then caddr arg
- else lprie list(" LISTAR ",arg,j)$
- symbolic procedure listarsq(arg,j)$
- prepsq listar(arg,j)$
- symbolic procedure dinprod expn$
- begin
- scalar x,y,z,xx,yy$
- x:=tensval car expn$
- y:=copy2(tensval cadr expn,t)$
- z:=nil . 1$
- if not(tensrnk car expn=2 and tensrnk cadr expn=2 and null cddr expn)
- then lprie list(" D-scalar product of ",expn)$
- a:if null x and null y then go to d
- else if null x or null y then go to er$
- xx:=car x$
- yy:=car y$
- b:if null xx and null yy then go to c
- else if null xx or null yy then go to er$
- z:=addsq(z,multsq(car xx,car yy))$
- xx:=cdr xx$
- yy:=cdr yy$
- go to b$
- c:x:=cdr x$
- y:=cdr y$
- go to a$
- d:return list(0,z)$
- er:lprie list(" EXPRESS error ",expn," D-S dyads of dif. size")
- end$
- put('!#,'express,'dinprod)$
- put('hash,'express,'dinprod)$
- put('hash,'rtypefn,'ptensor)$
- symbolic procedure antisymsum(u,v)$
- if dimension!* = 2 then difmul(car u,cadr u,cadr v,car v)
- else if dimension!* = 3 then list
- (difmul(cadr u,caddr u,caddr v,cadr v),
- difmul(caddr u,car u,car v,caddr v),
- difmul(car u,cadr u,cadr v,car v))
- else lprie list(" ANTISYMSUM ",u,v)$
- symbolic procedure difmul(a,b,c,d)$
- % A*C-B*D$
- addsq(multsq(a,c),negsq multsq(b,d))$
- symbolic procedure vectprod expn$
- begin
- scalar x,y,rnx,rny$
- x:=tensval car expn$
- y:=tensval cadr expn$
- rnx:=tensrnk car expn$
- rny:=tensrnk cadr expn$
- if rnx=1 and rny=1 then return
- list(dimension!* - 2,antisymsum(x,y))
- else if rnx=2 and rny=1 then return
- list(dimension!* - 1,mapcar(x,function(lambda a$
- antisymsum(a,y))))
- else if rnx=1 and rny=2 then return
- list(dimension!* - 1,
- if dimension!*=3 then
- tp1 copy2(mapcar(tp1 copy2(y,t),
- function(lambda a$ antisymsum(x,a))),t)
- else mapcar(tp1 copy2(y,t),
- function(lambda a$ antisymsum(x,a)) ))
- else lprie list(" VECTPROD of ",expn)
- end$
- put('!?,'express,'vectprod)$
- algebraic operator diff$
- symbolic procedure gradexpress expn$
- begin
- scalar arg,vt,ans,row,z$
- arg:=tensval car expn$
- vt:=tensrnk car expn$
- if vt=0 then
- for each i in coordindx!* do
- ans:=simp!* list('quotient,
- list('diff,
- list('!*sq,arg,nil),
- getel list('coordinats,i)),
- getel list('sf,i)) . ans
- else if vt=1 then
- for each i in coordindx!* do
- <<row:=nil$
- for each j in coordindx!* do
- <<z:=list('diff,
- listarsq(arg,j),
- getel list('coordinats,i))$
- z:=list list('quotient,
- z,
- getel list('sf,i))$
- for each k in coordindx!* do
- z:=list('times,
- getel list('christoffel,i,j,k),
- listarsq(arg,k)) . z$
- row:=simp!*('plus.z) . row>>$
- ans:=row . ans>>
- else lprie list(" GRAD of ",expn)$
- return list(vt+1,ans)
- end$
- put('grad,'express,'gradexpress)$
- symbolic procedure divexpress expn$
- begin
- scalar arg,vt,ans,z$
- arg:=tensval car expn$
- vt:=tensrnk car expn$
- if vt=1 then
- <<for each i in coordindx!* do
- z:=list('diff,
- list('times,
- sfprod!*,
- listarsq(arg,i),
- list('recip,
- getel list('sf,i))),
- getel list('coordinats,i)) . z$
- z:='plus . z$
- z:=list('quotient,
- z,
- sfprod!*)$
- ans:=simp!* z>>
- else if vt=2 then
- for each i in coordindx!* do
- <<z:=nil$
- for j:=1:dimension!* do
- <<z:=list('quotient,
- list('diff,
- list('times,
- listarsq(listar(arg,j),i),
- sfprod!*,
- list('recip,
- getel list('sf,j))),
- getel list('coordinats,j)),
- sfprod!*) . z$
- for l:=1:dimension!* do
- z:=list('times,
- listarsq(listar(arg,j),l),
- getel list('christoffel,j,i,l)) . z>>$
- ans:=simp!*('plus.z) . ans>>
- else lprie list(" DIV of ",expn)$
- return list(vt-1,ans)
- end$
- put('div,'express,'divexpress)$
- symbolic procedure laplexpress expn$
- begin
- scalar arg,vt,ans$
- arg:=tensval car expn$
- vt:=tensrnk car expn$
- if vt=0 then
- <<for i:=1:dimension!* do
- ans:=list('diff,
- list('times,
- sfprod!*,
- list('expt,
- getel list('sf,i),
- -2),
- list('diff,
- list('!*sq,arg,nil),
- getel list('coordinats,i))),
- getel list('coordinats,i)).ans$
- ans:=list(0,simp!* list('quotient,
- 'plus . ans,
- sfprod!*))>>
- else if vt=1 then
- ans:=divexpress list gradexpress expn
- else lprie list(" LAPLACIAN of ",expn)$
- return ans
- end$
- put('lapl,'express,'laplexpress)$
- symbolic procedure curlexpress expn$
- begin
- scalar arg,vt,ans,ic1,ic2$
- arg:=tensval car expn$
- vt:=tensrnk car expn$
- if vt=1 then
- for each i in (if dimension!* = 3 then coordindx!*
- else '(1) ) do
- <<ic1:=listar(cyclic1!*,i)$
- ic2:=listar(cyclic2!*,i)$
- ans:=simp!* list('times,
- getel list('sf,i),
- list('recip,sfprod!*),
- list('difference,
- list('diff,
- list('times,
- getel list('sf,ic2),
- listarsq(arg,ic2)),
- getel list('coordinats,ic1)),
- list('diff,
- list('times,
- getel list('sf,ic1),
- listarsq(arg,ic1)),
- getel list('coordinats,ic2))))
- . ans>>
- else lprie list(" CURL of ",expn)$
- return (if dimension!* = 3 then list(1,ans)
- else list(0,car ans))
- end$
- put('curl,'express,'curlexpress)$
- flag('(cons grad div lapl curl tens vect dyad dirdf !& !# !?)
- ,'tensfn)$
- symbolic procedure exscalval u$
- begin
- scalar fce,args$
- fce:=car u$
- args:=mapcar(cdr u,function(lambda a$cddr express a))$
- fce:=eval(get(fce,'express) . list mkquote args)$
- if car fce=0 then return cadr fce
- else typerr(u," is not scalar ")$
- return (nil . 1)
- end$
- algebraic$
- infix #,?,&$
- precedence .,**$
- precedence #,.$
- precedence ?,#$
- precedence &,?$
- symbolic flag('(cons !# !? div lapl curl dirdf),'full)$
- symbolic for each a in '(cons !# !? div lapl curl dirdf)
- do put(a,'simpfn,'exscalval)$
- symbolic procedure scalefactors transf$
- begin
- scalar var$
- dimension!*:=car transf$
- transf:=cdr transf$
- if dimension!*=2 then
- <<var:=cddr transf$
- transf:=list( car transf,cadr transf)>>
- else if dimension!*:=3 then
- <<var:=cdddr transf$
- transf:=list(car transf,cadr transf,caddr transf)>>
- else lprie list(" Can't handle dimension = ",dimension!*)$
- if dimension!*=length var then t
- else lprie list(" Transformation ",transf,var)$
- for i:=1:dimension!* do
- setel(list('coordinats,i),listar(var,i))$
- for row:=1:dimension!* do
- for col:=1:dimension!* do
- setel(list('jacobian,row,col),
- aeval list('df,
- listar(transf,col),
- getel list('coordinats ,row)))$
- updatedimen()$
- rscale()
- end$
- deflist('((scalefactors rlis)),'stat)$
- array jacobian(3,3),coordinats (3),sf(3),christoffel(3,3,3)$
- procedure rscale()$
- begin
- sfprod!*:=1$
- nscal!*:=nscal!* + 1$
- for row:=1:dimension!* do
- <<for col:=1:(row-1) do
- <<sf(row):=gcov(row,col)$
- if sf(row)=0 then nil
- else write " WARNING: Coordinate system is nonorthogonal"
- ," unless following simplifies to zero: ",
- sf(row) >>$
- write sf(row):=sqrt gcov(row,row)$
- sfprod!*:=sfprod!* *sf(row)>>$
- on nero$
- for i:=1:dimension!* do for j:=1:dimension!* do
- for k:=1:dimension!* do begin christoffel(i,j,k):=
- ((if i=j then df(sf(j),coordinats (k)) else 0)
- -(if i=k then df(sf(k),coordinats (j)) else 0))
- /(sf(j)*sf(k))$
- if wrchri(a)=0 then write christoffel(i,j,k):=
- christoffel(i,j,k) end$
- off nero
- end$
- procedure gcov(j,k)$
- for l:=1:dimension!* sum jacobian(j,l)*jacobian(k,l)$
- symbolic$
- symbolic procedure simpwrchri u$
- if !*wrchri then nil . 1
- else 1 . 1$
- put('wrchri,'simpfn,'simpwrchri)$
- symbolic procedure rmat$
- 'dyad . cdr matstat()$
- symbolic procedure formdyad(u,v,m)$
- 'list . mkquote 'dyad . cddr formmat(u,v,m)$
- put('dyad,'stat,'rmat)$
- put('dyad,'formfn,'formdyad)$
- symbolic procedure dirdfexpress expn$
- begin
- scalar arg,vt,direc,ans,z,dj,di,argj,sfj,sfi,cooj$
- arg:=cadr expn$
- vt:=tensrnk arg$
- direc:=car expn$
- if not (tensrnk direc=1) then return
- lprie list (" Direction in DIRDF is not a vector ",expn)$
- if vt=0 then return inprodexpress list (direc,
- gradexpress list arg)$
- arg:=tensval arg$
- direc:=tensval direc$
- if not vt=1 then return
- lprie list (" Argument of DIRDF is dyadic ",expn)$
- for each i in coordindx!* do
- <<z:=nil$
- di:=listarsq(direc,i)$
- sfi:=getel list('sf,i)$
- for j:=1:dimension!* do
- <<dj:=listarsq(direc,j)$
- argj:=listarsq(arg,j)$
- sfj:=getel list('sf,j)$
- cooj:=getel list('coordinats,j)$
- z:=list('times,
- dj,
- list('recip,sfj),
- list('diff,
- listarsq(arg,i),
- cooj)) . z$
- z:=list('times,
- di,
- argj,
- list('recip,sfi),
- list('recip,sfj),
- list('df,sfi,cooj)) . z$
- z:=list('minus,
- list('times,
- dj,
- argj,
- list('recip,sfi),
- list('recip,sfj),
- list('df,
- sfj,
- getel list('coordinats,i)))) . z>>$
- z:='plus . z$
- z:=simp!* z$
- ans:=z . ans >>$
- return list(1,ans)
- end$
- put('dirdf,'express,'dirdfexpress)$
- symbolic procedure dfexpress expn$
- begin
- scalar arg,vt,rest$
- arg:=tensval car expn$
- vt:=tensrnk car expn$
- rest:=cdr expn$
- rest:=mapcar(rest,function(lambda a$
- if tensrnk a=0 then
- if atom tensval a then tensval a
- else if cdr tensval a=1 and
- numberp car tensval a then
- car tensval a
- else !*q2k tensval a
- else lprie list(" Bad arg of DF ",
- expn)))$
- if vt=0 then return list(0,simpdf(list('!*sq,arg,t) . rest))
- else if vt=1 then return list(1,mapcar(arg,function(
- lambda a$simpdf(list('!*sq,a,t) . rest))) )
- else if vt=2 then return list(2,mapcar(arg,function(
- lambda a$mapcar(a,function(
- lambda b$simpdf(list('!*sq,b,t) . rest))) )))
- else lprie list(" Bad tensor in DF ",expn)
- end$
- put('df,'express,'dfexpress)$
- symbolic procedure diffexpress expn$
- begin
- scalar arg,vt,rest$
- arg:=tensval car expn$
- vt:=tensrnk car expn$
- rest:=cdr expn$
- rest:=mapcar(rest,function(lambda a$
- if tensrnk a=0 then
- if atom tensval a then tensval a
- else if cdr tensval a=1 and
- numberp car tensval a then
- car tensval a
- else !*q2k tensval a
- else lprie list(" Bad arg of DIFF ",
- expn)))$
- if vt=0 then return list(0,simp('diff . (prepsq arg . rest)))
- else if vt=1 then return list(1,mapcar(arg,function(
- lambda a$simp('diff . (prepsq a . rest))) ))
- else if vt=2 then return list(2,mapcar(arg,function(
- lambda a$mapcar(a,function(
- lambda b$simp('diff . (prepsq b . rest))) ))))
- else lprie list(" Bad tensor in DIFF ",expn)
- end$
- put('diff,'express,'diffexpress)$
- algebraic$
- scalefactors 3,x,y,z,x,y,z$
- endmodule$
- %***********************************************************************
- %***** *****
- %***** M O D U L E I I M E T *****
- %***** *****
- %***********************************************************************
- module iimet$
- % Author: R. Liska
- % Program IIMET, Version REDUCE 3.4 05/1991$
- symbolic$
- global '(cursym!* !*val dimension!*)$
- fluid '(!*exp alglist!*)$
- symbolic procedure array u$
- begin
- scalar msg,erfg$
- msg:=!*msg$
- !*msg:=nil$
- erfg:=erfg!*$
- erfg!*:=nil$
- arrayfn('symbolic,
- mapcar (u,function(lambda a$car a . sub1lis cdr a)))$
- erfg!*:=erfg$
- !*msg:=msg
- end$
- symbolic procedure sub1lis u$
- if null u then nil else ((car u - 1) . sub1lis cdr u)$
- sfprod!*:=1$
- global'(date!*!*)$
- date!*!*:= "IIMET Ver 1.1 17/05/91"$
- put('version,'stat,'rlis)$
- put('diff,'simpfn,'simpiden)$
- global '(coords!* icoords!* dvars!* grids!* given!* same!*
- difml!* iobjs!* !*twogrid !*eqfu !*fulleq !*centergrid)$
- switch twogrid,eqfu,fulleq,centergrid$
- !*twogrid:=t$ % Given functions can be on both grids.
- !*eqfu:=nil$ % During pattern matching the given and
- % looked for functions are different.
- !*fulleq:=t$ % Optimalization is performed on both sides of PDE.
- !*centergrid:=t$ % Centers of grid cells are in points I
- % (otherwise in I+1/2).
- icoords!*:='(i j k l m n i1 j1 k1 l1 m1 n1)$
- % Indices which are given implicit.
- procedure coordfn$
- % Stat procedure of the COORDINATES statement, which defines indexes
- % of coordinates.
- begin
- scalar cor,icor$
- flag('(into),'delim)$
- cor:=remcomma xread nil$
- remflag('(into),'delim)$
- if cursym!* eq 'into then
- icor:=remcomma xread nil
- else if cursym!* eq '!*semicol!* then
- icor:=icoords!*
- else return symerr('coordfn,t)$
- return list('putcor,
- mkquote cor,
- mkquote icor)
- end$
- put('coordinates,'stat,'coordfn)$
- flag('(putcor),'nochange)$
- procedure putcor(u,v)$
- begin
- scalar j$
- j:=1$
- coords!*:=u$
- while u do
- <<if not idp car u then msgpri
- (" Coordinate ",car u," must be identifier",nil,'hold)$
- if not(idp car v or fixp car v) then msgpri
- (" Index ",car v," must be identifier or integer",nil,'hold)$
- put(car u,'index,list car v)$
- put(car v,'coord,list car u)$
- put(car u,'ngrid,j)$
- j:=j+1$
- put(car u,'simpfn,'simpiden)$
- u:=cdr u$
- v:=cdr v >>
- end$
- procedure tcar u$
- if pairp u then car u
- else u$
- procedure grid u$
- % Procedure definning the statement GRID.
- eval list(get(car u,'grid),
- mkquote cdr u)$
- put('grid,'stat,'rlis)$
- put('uniform,'grid,'gridunif)$
- procedure gridunif u$
- flag(u,'uniform)$
- procedure dependence u$
- % Procedure definning the statemnt DEPENDENCE.
- begin
- scalar x,y,z,gg,l,te,yy,y1,yl$
- if null coords!* then rederr
- " Coordinates have not been defined yet"$
- gg:=explode '!*grid$
- l:=list(length coords!* + 1)$
- a:x:=car u$
- y:=car x$
- if idp y then if not y memq dvars!* then dvars!*:=y . dvars!*
- else nil
- else return msgpri(" Variable ",y," must be identifier",nil,
- 'hold)$
- z:=cdr x$
- x:=car z$
- if not numberp x then go to b$
- if x=1 then apply('vectors,list y)
- else if x=2 then apply('dyads,list y)
- else if x=0 then t
- else return errpri2(car u,'hold)$
- z:=cdr z$
- b:yl:=nil$
- yy:=explode y$
- te:=aeval y$
- if eqcar(te,'tensor) then te:=caddr te
- else te:=nil$
- if te=1 then
- for i:=1:dimension!* do
- <<y1:=intern compress append(yy,explode i)$
- yl:=y1 . yl$
- setk1(list(y,i),y1,t)$
- x:=intern compress append(explode y1,gg)$
- % The name of an array filled with grids of Y(I)
- put(y1,'grid,x)$
- eval list('array,mkquote list(x . l)) >>
- else if te=2 then
- for i:=1:dimension!* do
- for j:=1:dimension!* do
- <<y1:=intern compress append(yy,append(explode i,
- explode j))$
- yl:=y1 . yl$
- setk1(list(y,i,j),y1,t)$
- x:=intern compress append(explode y1,gg)$
- % The name of an array filled with grids of Y(I)
- put(y1,'grid,x)$
- eval list('array,mkquote list(x . l)) >>
- else
- <<yl:=y . yl$
- x:=intern compress append(yy,gg)$
- put(y,'grid,x)$
- eval list('array,mkquote list(x . l)) >>$
- for each a in yl do put(a,'simpfn, 'simpiden)$
- put(y,'names,reverse yl)$
- if te member '(1 2) then
- <<put(y,'kkvalue,get(y,'kvalue))$
- remprop(y,'kvalue) >>$
- for each v in z do
- if v memq coords!* then
- for each w in yl do depend1(w,v,t)
- else msgpri(" Identifier ",v," is not coordinate",nil,'hold)$
- u:=cdr u$
- if u then go to a$
- return nil
- end$
- put('dependence,'stat,'rlis)$
- procedure given u$
- begin
- scalar x,xnam$
- a:x:=car u$
- xnam:=get(x,'names)$
- if not idp x then msgpri
- (" Variable ",x," must be identifier",nil,'hold)
- else if xnam then given!* := union(xnam,given!*)
- else msgpri
- (" Identifier ",x," is not variable",nil,'hold)$
- u:=cdr u$
- if u then go to a$
- return nil
- end$
- put('given,'stat,'rlis)$
- procedure cleargiven$
- <<remflag(given!*,'noeq)$
- given!*:=nil >>$
- put('cleargiven,'stat,'endstat)$
- flag('(cleargiven),'eval)$
- newtok'(( !. !. ) isgr)$
- algebraic infix ..$
- grids!* := '(one half)$
- procedure trlis$
- % Stat procedure of the statement ISGRID.
- begin
- scalar x$
- put('!*,'newnam,'tims)$
- x:=rlis()$
- remprop('!*,'newnam)$
- return x
- end$
- procedure formtr(u,vars,mode)$
- list('isgrid,mkquote cdr u)$
- procedure isgrid u$
- % Proceudre definning the statement ISGRID.
- begin
- scalar x,y,z,z1,te,gd,lz,lz1$
- a:x:=car u$
- y:=car x$
- x:=cdr x$
- if not(y memq dvars!*) then return msgpri
- (" Identifier ",y," is not variable",nil,'hold)$
- if null x then go to er$
- te:=aeval y$
- te:=if eqcar(te,'tensor) then caddr te
- else nil$
- if (te=1 and null atom x and indexp car x and gridp cdr x) or
- (te=2 and null atom x and indexp car x and null atom cdr x
- and indexp cadr x and gridp cddr x) or
- ((te=0 or null te) and null atom x and gridp x) then t
- else go to er$
- if te=1 then
- <<z:=car x$
- x:=cdr x$
- lz:=nil$
- if numberp z then lz:=z . lz
- else for i:=1:dimension!* do lz:=i . lz$
- for each a in lz do mapc(x,function(lambda b$
- setel(list(get(cadr assoc(list(y,a),
- get(y,'kkvalue)),
- 'grid),
- car b),
- cadr b . nil))) >>
- else if te=2 then
- <<z:=car x$
- z1:=cadr x$
- x:=cddr x$
- lz:=lz1:=nil$
- if numberp z then lz:=z . lz
- else for i:=1:dimension!* do lz:=i . lz$
- if numberp z1 then lz1:=z1 . lz1
- else for i:=1:dimension!* do lz1:=i . lz1$
- for each a in lz do for each b in lz1 do
- mapc(x,function(lambda c$
- setel(list(get(cadr assoc(list(y,a,b),
- get(y,'kkvalue)),
- 'grid),
- car c),
- cadr c . nil))) >>
- else mapc(x,function(lambda c$
- setel(list(get(y,'grid),car c),cadr c . nil)))$
- u:=cdr u$
- if u then go to a$
- return nil$
- er:errpri2(car u,'hold)
- end$
- put('isgrid,'stat,'trlis)$
- put('isgrid,'formfn,'formtr)$
- procedure indexp u$
- u eq 'tims or (numberp u and 0<u and u<dimension!*)$
- procedure gridp u$
- null atom u and
- begin
- scalar x$
- a:x:=car u$
- if null atom x and car x eq 'isgr and null atom cdr x
- and cadr x memq coords!* and null atom cddr x and
- caddr x memq grids!* then rplaca(u,cdr x)
- else return nil$
- x:=car u$
- rplaca(x,get(car x,'ngrid))$
- u:=cdr u$
- if u then go to a$
- return t
- end$
- procedure grideq u$
- begin
- scalar x,y,z$
- x:=u$
- a:y:=car x$
- if not car y memq dvars!* then return msgpri(
- "Identifier ",car y," is not variable",nil,'hold)$
- z:=cdr y$
- b:if not atom car z and caar z eq 'isgr and cadar z memq coords!* and
- caddar z memq grids!* then put(car y,cadar z,caddar z)
- else return errpri2(u,'hold)$
- z:=cdr z$
- if z then go to b$
- x:=cdr x$
- if x then go to a$
- return nil
- end$
- put('grideq,'stat,'rlis)$
- fluid '(coord unvars sunvars interpolp novars ncor nvar intp icor gvar
- hi hip1 hip2 him1 him2 lhs rhs lsun lun xxgrid resar)$
- % GVAR - grid on which is actual equation integrated
- % NVAR - number of actual equation in IIM21
- % NCOR - number of actual coordinate
- % UNVARS - list of looked for functions
- % NOVARS - list of functions controlled by the SAME statement
- % SUNVARS - list of looked for functions, which are not controlled by
- % SAME, and of given functions, which are not controlled by
- % SAME and which can be only on one grid (if OFF TWOGRID)
- % in case ON TWOGRID given functions are not in SUNVARS
- % distinguishing of given functions defined in ISGRID is done
- % in procedures TWOGRIDP and GETGRID
- % LSUN - length of SUNVARS-1
- % INTERPOLP-flag for MATCHLINEAR (for OFF EXP), has value T for calling
- % from INTERPOL and NIL for calling from SIMPINTT - for
- % NGETVAR in SIMPINTT
- % RESAR - the name of an array which will be filled by the result
- procedure zero u$
- nil . 1$
- procedure ngetvar(u,v)$
- if atom u then get(u,v)
- else if atom car u then get(car u,v)
- else nil$
- procedure ngrid u$
- if u eq 'one then 'none
- else if u eq 'half then 'nhalf
- else nil$
- procedure gnot u$
- % Procedure inverts denotation of half-integer and integer grid
- if u='one then 'half
- else if u='half then 'one
- else nil$
- procedure same u$
- begin
- scalar x,y,z,bo$
- if null same!* then <<same!*:=list u$
- return nil >>$
- x:=same!*$
- a:y:=car x$
- z:=u$
- bo:=nil$
- while z and not bo do
- <<if car z memq y then bo:=t$
- z:=cdr z >>$
- if bo then go to b$
- x:=cdr x$
- if x then go to a$
- same!*:= u . same!*$
- return nil$
- b:rplaca(x,union(y,u))$
- return nil
- end$
- put('same,'stat,'rlis)$
- procedure clearsame$
- same!*:=nil$
- put('clearsame,'stat,'endstat)$
- flag('(clearsame),'eval)$
- procedure mksame$
- begin
- scalar x,y,z,yy,bo$
- x:=expndsame()$
- a:y:=car x$
- yy:=y$
- while yy and not(car yy memq unvars) do yy:=cdr yy$
- if null yy then
- <<msgpri
- (" Same declaration ",nil,list(y,
- " doesn't contain unknown variable"),nil,'hold)$
- go to b >>$
- if y neq yy then
- <<z:=car y$ % The looked for function on the first place
- rplaca(y,car yy)$
- rplaca(yy,z) >>$
- z:=car y$
- yy:=cdr y$
- put(z,'sames,yy)$
- novars:=union(novars,yy)$
- for each a in cdr y do
- % Testing if A has appeared in the statement DEPENDENCE
- if not get(a,'grid) then msgpri
- (" Identifier ",a," is not variable",nil,'hold)
- else put(a,'same,z)$
- for i:=1:length coords!* do
- <<yy:=y$
- bo:=nil$
- while yy and not bo do % Test on ISGRID
- <<bo:=getel list(get(car yy,'grid),i)$
- yy:=cdr yy >>$
- if bo then filgrid(y,bo,i) >>$
- b:x:=cdr x$
- if x then go to a$
- sunvars:=setdiff(unvars,novars)$
- return unvars
- end$
- procedure filgrid(y,bo,i)$
- % Filling up after finding ISGRID according to SAME
- begin
- scalar yy,bg$
- yy:=y$
- while yy do
- <<bg:=getel list(get(car yy,'grid),i)$
- if null bg then setel(list(get(car yy,'grid),i),bo)
- else if bg eq bo then t
- else msgpri
- (" Same declaration ",nil,list(y,
- " doesn't correspond to isgrid declarations"),nil,'hold)$
- yy:=cdr yy>>
- end$
- procedure expndsame$
- % Extending SAME!* by new identifiers for vectors and tensors
- begin
- scalar x,y,sam$
- x:=same!*$
- a:y:=mapcan(car x,function(lambda a$copy1 get(a,'names)))$
- sam:=y . sam$
- x:=cdr x$
- if x then go to a$
- return sam
- end$
- procedure copy1 u$
- if null u then nil
- else if atom u then u
- else car u . copy1 cdr u$
- procedure nrsame$
- % Changing the numbering of variables according to SAME
- for each a in sunvars do
- begin
- scalar x,nx$
- x:=get(a,'sames)$
- if x then
- <<nx:=get(a,'nrvar)$
- for each b in x do put(b,'nrvar,nx) >>$
- return nil
- end$
- procedure iim u$
- % Procedure defines the statement IIM
- begin
- scalar xx,xxx,be,beb1,val,twogr$
- iim1 u$
- iobjs!*:=append(unvars,append(coords!*,given!*))$
- val:=!*val$
- !*val:=nil$
- novars:=sunvars:=nil$
- if same!* then mksame() else sunvars:=unvars$
- twogr:=!*twogrid$
- xxx:=setdiff(given!*,novars)$
- if !*twogrid then
- if null xxx then !*twogrid:=nil
- else flag(xxx,'twogrid)
- else sunvars:=union(sunvars,xxx)$
- flag(given!*,'noeq)$
- xxx:=0$ % Numbering of variables and equation
- for each a in sunvars do
- <<put(a,'nrvar,xxx)$
- xxx:=xxx+1 >>$
- if same!* then nrsame()$
- xxx:=0$
- for each a in unvars do
- <<put(a,'nreq,xxx)$
- xxx:=xxx+1 >>$
- lun:=length unvars-1$
- lsun:=length sunvars-1$
- eval list('array,mkquote list('!*f2 . add1lis list(lun,lsun,1)))$
- xxx:=coords!*$
- d:coord:=car xxx$
- icor:=tcar get(coord,'index)$
- difml!*:=nil$
- for i:=0:10 do difml!*:=append(difml!*,
- for each a in getel list('difm!*,i) collect
- if (xx:=atsoc(coord,cdr a)) then car a . cdr xx
- else if (xx:=atsoc('all,cdr a)) then car a . cdr xx
- else nil )$
- difml!*:=mapcon(difml!*,function(lambda a$if null car a then nil
- else list car a ))$
- if !*twogrid then difml!*:=
- for each a in difml!* collect
- if (xx:=caadr a) and (!*eqfu or memq(caar xx,'(f g))) then
- (car a . extdif(cdr a,nil))
- else a$
- be:=iim2 ()$
- iim21 be$
- if car be then beb1:=iim22 be
- else beb1:=list(car be,cadr be,car be)$
- if not fixp intp then msgpri(" INTP after heuristic search ",
- nil,list("is not a number, INTP=",intp),nil,nil)$
- if not(intp=0) then iim3 beb1$
- iim4 ()$
- xxx:=cdr xxx$
- if xxx then go to d$
- iim5 ()$
- for each a in '(rtype avalue dimension) do remprop('!*f2,a)$
- !*val:=val$ !*twogrid:=twogr$
- return nil
- end$
- procedure extdif(x,lg)$
- % Performs corrections of diff. schemes for given functions on
- % two grids - everytime chooses the scheme with minimal penalty.
- % LG - list of all terms from (U V W F G), which has been in X
- % already changed and choosen.
- begin
- scalar olds,news,y,gy,xx,lgrid,gg,g1$
- lgrid:=get('difm!*,'grids)$
- gy:=caar x$
- gg:=gy$
- for each a in lg do gg:=delete(atsoc(a,gg),gg)$
- if gg then gg:=caar gg
- else return x$
- x:=mapcar(x,function(lambda a$a))$
- a:xx:=x$
- y:=car x$
- gy:=car y$
- g1:=atsoc(gg,gy)$
- gy:=(gg . gnot cdr g1) . delete(g1,gy)$
- gy:=acmemb(gy,lgrid)$
- while cdr xx and not eqcar(cadr xx,gy) do xx:=cdr xx$
- if cdr xx then
- <<olds:=y . (cadr xx . olds)$
- y:=if cadr y > cadadr xx
- or (cadr y=cadadr xx
- and sublength caddr y > sublength car cddadr xx)
- then cadr xx
- else y$
- rplacd(xx,cddr xx) >>
- else olds:=y . olds$
- gy:=car y$
- g1:=atsoc(gg,gy)$
- gy:=delete(g1,gy)$
- if null gy then t
- else if (xx:=acmemb(gy,lgrid)) then gy:=xx
- else nconc(lgrid, list gy)$
- y:=gy . cdr y$
- news:=y . news$
- x:=cdr x$
- if x then go to a$
- if(xx:=caar news) and (!*eqfu or memq(caar xx,'(f g))) then
- <<olds:=extdif(olds,gg . lg)$
- news:=extdif(news,lg) >>$
- return nconc(olds,news)
- end$
- procedure sublength u$
- if atom u then 0
- else length u + sublengthca u$
- procedure sublengthca u$
- if null u then 0
- else sublength car u + sublengthca cdr u$
- procedure iim1 u$
- % Checks the syntax of the IIM statement, calculates scalar PDEs,
- % vector and tensor equations are expanded to scalar components.
- begin
- scalar x,xx,e,te,exp$
- terpri()$
- prin2t"*****************************"$
- prin2 "***** Program ***** "$
- prin2t date!*!*$
- prin2t"*****************************"$
- exp:=!*exp$
- !*exp:=t$
- rhs:=lhs:=unvars:=nil$
- if null coords!* then return lprie " Coordinates defined not yet"$
- if null dvars!* then return lprie " Variables defined not yet"$
- for each v in dvars!* do
- if eqcar((te:=aeval v),'tensor) and caddr te member '(1 2) then
- put(v,'kvalue,get(v,'kkvalue))$
- if atom u or not idp car u then return errpri2(u,'hold)$
- resar:=car u$
- u:=cdr u$
- a:if atom u or atom cdr u then return errpri2(u,'hold)$
- x:=car u$
- if not idp x then return msgpri
- (" Parameter ",x," must be identifier",nil,'hold)
- else if not(x memq dvars!*) then return msgpri
- (" Identifier ",x," is not variable",nil,'hold)
- else if x memq unvars then return msgpri
- (" Variable ",x," has second appearance",nil,'hold)
- else if x memq given!* then return msgpri
- (" Variable ",x," cannot be declared given",nil,'hold)
- else unvars:=x . unvars$
- e:=cadr u$
- if not eqexpr e then return msgpri
- (" Parameter ",e," must be equation",nil,'hold)
- else e:=aeval list('times,
- list('difference,cadr e,caddr e),
- sfprod!*)$
- if atom e then return msgpri
- (" Equation ",e," must be P.D.E.",nil,'hold)$
- te:=aeval x$
- te:=if eqcar(te,'tensor) then caddr te
- else nil$
- if(te=1 and car e eq 'tensor and caddr e=1) or
- (te=2 and car e eq 'tensor and caddr e=2) or
- (null te and car e eq 'tensor and caddr e=0) then
- e:=cadddr e % Necessary to carrect after change in EXPRESS
- else if null te and car e eq '!*sq then e:=cadr e
- else return msgpri
- (" Tensor order of",x," does not correspond to order of ",e,
- 'hold)$
- lhs:=e . lhs$
- u:=cddr u$
- if u then go to a$
- for each v in dvars!* do
- if eqcar((te:=aeval v),'tensor) and caddr te member '(1 2) then
- remprop(v,'kvalue)$
- b:x:=car unvars$
- e:=car lhs$ % Transformation of vectors and tensor into components
- te:=aeval x$
- te:=if eqcar(te,'tensor) then caddr te
- else nil$
- if te=1 then rhs:=append(e,rhs)
- else if te=2 then for each a in reverse e do
- rhs:=append(a,rhs)
- else rhs:=e . rhs$
- xx:=append(get(x,'names),xx)$ % Add the checking if given equation
- unvars:=cdr unvars$ % solves given variable (tensor var.)
- lhs:=cdr lhs$
- if unvars then go to b$
- unvars:=xx$
- lhs:=rhs$
- put('diff,'simpfn,'zero)$ % Splitting left and right hand side
- alglist!*:=nil . nil$ % All derivatives go to left h.s.
- rhs:=mapcar(rhs,function resimp)$
- put('diff,'simpfn,'simpiden)$
- alglist!*:=nil . nil$
- x:=lhs$
- xx:=rhs$
- terpri()$
- prin2t " Partial Differential Equations"$
- prin2t " =============================="$
- terpri()$
- c:rplaca(xx,negsq car xx)$
- rplaca(x,prepsq!* addsq(car x,car xx))$
- rplaca(xx,prepsq!* car xx)$
- maprin car x$
- prin2!* " = "$
- maprin car xx$
- terpri!* t$
- rplaca(x,prepsq simp car x)$
- rplaca(xx,prepsq simp car xx)$
- x:=cdr x$
- xx:=cdr xx$
- if x then go to c$
- terpri()$
- x:=length lhs-1$
- if x=0 then eval list('array, mkquote list(resar . add1lis list(1)))
- else eval list('array,mkquote list(resar . add1lis list(x,1)))$
- !*exp:=exp$
- return nil
- end$
- procedure iim2$
- % Defines the steps of the grid, splits variables to free and predefined
- % grid in actual coordinate.
- begin
- scalar b,e,xx,dihalf,dione,dihalfc$
- e:=append(explode 'h,explode coord)$
- e:=intern compress e$
- if flagp(coord,'uniform) then hi:=hip1:=him1:=him2:=e
- else <<put(e,'simpfn,'simpiden)$
- xx:=tcar get(coord,'index)$
- him1:=list(e,list('difference,xx,1))$
- him2:=list(e,list('difference,xx,2))$
- hi:=list(e,xx)$
- hip2:=list(e,list('plus,xx,2))$
- hip1:=list(e,list('plus,xx,1)) >>$
- dihalf:=list(
- 'di . list('quotient,
- list('plus,him1,hi),
- 2),
- 'dim1 . him1,
- 'dip1 . hi,
- 'dim2 . list('quotient,
- list('plus,him2,him1),
- 2),
- 'dip2 . list('quotient,
- list('plus,hi,hip1),
- 2))$
- dihalfc:=list(
- 'di . list('quotient,
- list('plus,hip1,hi),
- 2),
- 'dim1 . hi,
- 'dip1 . hip1,
- 'dim2 . list('quotient,
- list('plus,hi,him1),
- 2),
- 'dip2 . list('quotient,
- list('plus,hip2,hip1),
- 2))$
- dione:=list(
- 'di . hi,
- 'dim1 . list('quotient,
- list('plus,him1,hi),
- 2),
- 'dip1 . list('quotient,
- list('plus,hi,hip1),
- 2),
- 'dim2 . him1,
- 'dip2 . hip1)$
- put('steps,'one,
- ('i . icor) . (if !*centergrid then dione else dihalf))$
- put('steps,'half,
- ('i . list('plus,
- icor,
- '(quotient 1 2))) . (if !*centergrid then dihalfc
- else dione))$
- ncor:=get(coord,'ngrid)$ % Number of the COODR coordinate
- e:=nil$
- for each a in sunvars do % Splitting of variables with predefined
- % grid.
- if (xx:=getel list(get(a,'grid),ncor))
- and car xx then e:=a . e$
- b:=setdiff(sunvars,e)$
- return list(b,e)
- end$
- procedure filfree(var,vgrid,freelst,pgr,peq)$
- begin
- scalar x,nx,grn,nv,ng,ngrn,g1,g2,saml,bsam,asam,egrid$
- x:=ngetvar (var,'nrvar)$
- c:put(var,pgr,vgrid)$
- egrid:=vgrid$
- if flagp(var,'noeq) then go to d$
- nx:=ngetvar (var,'nreq)$
- % calulating in which point will be the euation for VAR integrated
- if egrid:=get(var,coord) then go to a
- else egrid:=vgrid$
- put('f2val,'free,'f2vzero)$
- if (g1:=f2eval(nx,x,0)) > (g2:=f2eval(nx,x,1)) then
- egrid:=gnot vgrid$
- if not g1=g2 then go to a$
- put('f2val,'free,'f2vmin)$
- if(g1:=f2eval(nx,x,0)) > (g2:=f2eval(nx,x,1)) then
- egrid:=gnot vgrid$
- if not g1=g2 then go to a$
- put('f2val,'free,'f2vmax)$
- if (g1:=f2eval(nx,x,0)) > (g2:=f2eval(nx,x,1)) then
- egrid:=gnot vgrid$
- a:put(var,peq,egrid)$
- % Penalties for free variables in the equation for VAR
- grn:=gnot egrid$
- ng:=ngrid egrid$
- ngrn:=ngrid grn$
- for each a in freelst do
- <<nv:=ngetvar (a,'nrvar)$
- asam:=a . get(a,'sames)$
- for each aa in asam do put(aa,pgr,egrid)$
- put(a,ng,cfplus2(get(a,ng),getel list('!*f2,nx,nv,0)))$
- for each aa in asam do put(aa,pgr,grn)$
- put(a,ngrn,cfplus2(get(a,ngrn),getel list('!*f2,nx,nv,1)))$
- for each aa in asam do remprop(aa,pgr) >>$
- if bsam then go to d$
- saml:=get(var,'sames)$
- bsam:=t$
- d:if null saml then go to b$
- var:=car saml$
- saml:=cdr saml$
- go to c$
- b:return egrid
- end$
- procedure f2eval(i,j,k)$
- eval getel list('!*f2,i,j,k)$
- procedure f2plus(i,j,k,l)$
- % Procedure fills F2(I,J,K) with the number F2(I,J,K)+L$
- begin
- scalar ma,x,y$
- if pairp l then
- if length car l=2 and cadr l=caddr l then l:=cadr l
- else if length l=3 and cadr l=caddr l and cadr l=cadddr l and
- cadr l=car cddddr l then l:=cadr l$
- ma:=list('!*f2,i,j,k)$
- x:=getel ma$
- if numberp l then
- if numberp x then setel(ma,x+l)
- else rplaca(x,car x+l)
- else
- if numberp x then setel(ma,list(x,l))
- else if (y:=assoc(car l,cdr x)) then
- <<rplaca(cdr y,cadr y+cadr l)$
- rplaca(cddr y,caddr y+caddr l)$
- if cddar l then
- <<rplaca(cdddr y,cadddr y + cadddr l)$
- rplaca(cddddr y,car cddddr y+car cddddr l)>>>>
- else rplacd(x,(l . cdr x))
- end$
- procedure f2var u$
- % Forms the elements of array !*F2 into the form
- % (FPLUS <CISLO> {(F2VAL U V N1 N2)})
- if numberp u then u
- else ('fplus .
- car u . mapcar(cdr u,function(lambda a$
- list('f2val,car a,cdr a))))$
- fexpr procedure f2val x$
- % Evaluates the expression (F2VAL ...)
- begin
- scalar us,ns,u,v,w,n1,n2,n3,n4,gu,gv,gw$
- us:=car x$
- ns:=cadr x$
- u:=car us$
- v:=cadr us$
- n1:=car ns$
- n2:= cadr ns$
- gu:=get(u,xxgrid)$
- gv:=get(v,xxgrid)$
- if cddr us then
- <<w:=caddr us$
- gw:=get(w,xxgrid)$
- n3:=caddr ns$
- n4:=cadddr ns>>$
- return
- if w then
- if gu and gv and gw then
- if gu eq gv and gu eq gw then n1
- else if gu eq gv then n2
- else if gu eq gw then n3
- else if gv eq gw then n4
- else apply(get('f2val,'free),list(us,ns))
- else if gu and gv then
- if gu eq gv then aplf2val(u,w,n1,n2)
- else aplf2val(u,w,n3,n4)
- else if gu and gw then
- if gu eq gw then aplf2val(u,v,n1,n3)
- else aplf2val(u,v,n2,n4)
- else if gv and gw then
- if gv eq gw then aplf2val(u,v,n1,n4)
- else aplf2val(u,v,n2,n3)
- else apply(get('f2val,'free),list(us,ns))
- else if gu and gv then
- if gu eq gv then n1
- else n2
- else apply(get('f2val,'free),list(us,ns))
- end$
- procedure aplf2val(u,v,n1,n2)$
- apply(get('f2val,'free),list(list(u,v),list(n1,n2)))$
- fexpr procedure fplus u$
- % Evaluates the expression (FPLUS ...)
- begin
- scalar x,y,z$
- % U:=CAR U$
- y:=car u$
- a:u:=cdr u$
- z:=eval car u$
- if numberp z then y:=y+z
- else x:=z . x$
- if cdr u then go to a$
- return
- if x then ('fplus . y . x)
- else y
- end$
- procedure cfplus2(u,v)$
- % Adds the expressions of type (FPLUS ...).
- % Destroys U, does not destroy V.
- begin
- scalar f2v$
- f2v:=get('f2val,'free)$
- put('f2val,'free,'f2vunchange)$
- if not fixp u then u:=eval u$
- if not fixp v then v:=eval v$
- put('f2val,'free,f2v)$
- return
- if fixp u then
- if fixp v then (u + v)
- else ('fplus . (cadr v+u) . cddr v)
- else if numberp v then <<rplaca(cdr u,cadr u+v)$ u>>
- else <<rplaca(cdr u,cadr u+cadr v)$
- nconc(u,cddr v) >>
- end$
- procedure f2vunchange(us,ns)$
- list('f2val,us,ns)$
- procedure f2vzero(us,ns)$
- 0$
- procedure f2vplus(us,ns)$
- eval('plus . ns)$
- procedure f2vmax(us,ns)$
- eval('max . ns)$
- procedure f2vmin(us,ns)$
- eval('min . ns)$
- put('f2val,'fselect,'f2vplus)$
- put('f2val,'fgrid,'f2vmin)$
- procedure iim21 u$
- % Fills the array !*F2 according to the system of PDE and penalties
- % given.
- % Fills the properties NONE,NHALF (FONE,FHALF) of free variables.
- % According to predefined variables filles the properties XGRID and EQ
- % of predefined variables.
- begin
- scalar b,e,lh,lhe,xx,rh,bdef$
- b:=car u$ % Free vars
- e:=cadr u$ % Predefined vars
- for i:=0:lun do
- for j:=0:lsun do % Filling the array F2
- <<setel(list('!*f2,i,j,0),0)$
- setel(list('!*f2,i,j,1),0) >>$
- nvar:=0$ % Number of actual variable
- lh:=lhs$
- rh:=rhs$
- interpolp:=nil$
- put('intt,'simpfn,'simpiden)$
- a:lhe:=car lh$ % Actual equation
- lhe:=formlnr list('intt,lhe,coord)$
- rplaca(lh,lhe)$
- bdef:=t$
- for each var in sunvars do
- if get(var,coord) then t
- else bdef:=nil$
- if null b and bdef then go to c$
- % If there are no free variables it is not necessary to fill
- % the array F2 - no optimalization is necessary -> To use this
- % statement, we have to test if we know in which point (over
- % which interval) will all equation be integrated (discretized).
- put('intt,'simpfn,'simpintt)$
- alglist!*:=nil . nil$
- simp lhe$
- put('intt,'simpfn,'simpiden)$
- if !*fulleq then % Optimalizatioon is performed for both sides of
- <<lhe:=car rh$ % equations, otherwise only for left hand side.
- lhe:=formlnr list('intt,lhe,coord)$
- put('intt,'simpfn,'simpintt)$
- simp lhe$
- alglist!*:=nil . nil$
- put('intt,'simpfn,'simpiden)$
- rh:=cdr rh >>$
- c:nvar:=nvar+1$
- lh:=cdr lh$
- if lh then go to a$
- for i:=0:lun do
- for j:=0:lsun do
- for k:=0:1 do
- setel(list('!*f2,i,j,k),f2var getel list('!*f2,i,j,k))$
- xxgrid:='xgrid$
- for each a in b do
- <<put(a,'none,0)$
- put(a,'nhalf,0) >>$
- for each a in e do % Predefined variables
- filfree(a,car getel list(get(a,'grid),ncor),b,'xgrid,'eq)$
- % Predefined penalties
- intp:=0$
- for each a in e do
- if a memq unvars then
- <<xx:=ngetvar(a,'nreq)$
- for each c in e do
- if get(c,'xgrid) eq get(a,'eq) then intpfplus(xx,c,0)
- else intpfplus(xx,c,1) >>$
- for each a in b do
- <<put(a,'fone,get(a,'none))$
- put(a,'fhalf,get(a,'nhalf)) >>$
- return nil
- end$
- procedure iim22 u$
- begin
- scalar b,e,bb,b1,b2,x,xx,x1,nv,g1,g2$
- b:=car u$
- e:=cadr u$
- bb:=b$ % Heuristic determination of grids for
- % variables from B
- f:x:=car bb$ % Chose the next variable X
- put('f2val,'free,get('f2val,'fselect))$
- xx:=abs(eval get(x,'none)-eval get(x,'nhalf))$
- b2:=cdr bb$
- while b2 do
- if xx<(x1:=abs(eval get(car b2,'none)-eval get(car b2,'nhalf)))
- then <<x:=car b2$
- xx:=x1$
- b2:=cdr b2 >>
- else b2:=cdr b2$
- b1:=x . b1$ % List of variables subsequently choosen from B
- bb:=delete(x,bb)$ % List of variables remaining in B
- put('f2val,'free,get('f2val,'fgrid))$
- put(x,'xgrid,'one)$
- g1:=eval get(x,'none)$
- put(x,'xgrid,'half)$
- g2:=eval get(x,'nhalf)$
- if g1>g2 then xx:='half
- else xx:='one$
- filfree(x,xx,bb,'xgrid,'eq)$
- intpgplus(x,xx)$
- for each ax in (x . get(x,'sames)) do
- if ax memq unvars then
- <<x1:=ngetvar(ax,'nreq)$
- for each a in append(b1,e) do
- if get(a,'xgrid)=get(ax,'eq) then intpfplus(x1,a,0)
- else intpfplus(x1,a,1) >>$
- if bb then go to f$
- return list(b,e,b1)
- end$
- procedure intpfplus(nx1,a,n)$
- intp:=cfplus2(intp,getel list('!*f2,nx1,ngetvar(a,'nrvar),n))$
- procedure intpgplus(a,ga)$
- intp:=cfplus2(intp,get(a,ngrid ga))$
- procedure iim3 u$
- begin
- scalar b,e,b1,bb$
- prin2t" Backtracking needed in grid optimalization"$
- b:=car u$ % Free vars
- e:=cadr u$ % Predefined vars
- b1:=caddr u$
- for each a in b do % Full search - bactracking
- <<put(a,'none,get(a,'fone))$
- put(a,'nhalf,get(a,'fhalf)) >>$
- xxgrid:='bxgrid$
- nbxgrid(e,'bxgrid,'beq,'xgrid,'eq)$
- put('f2val,'free,'f2vunchange)$
- varyback(b1,nil)$
- for each a in union(unvars,given!*) do
- <<remprop(a,'bxgrid)$
- remprop(a,'beq) >>$
- return nil
- end$
- procedure nbxgrid(u,ng,ne,og,oe)$
- for each a in u do
- for each b in (a . get(a,'sames)) do
- <<put(b,ng,get(b,og))$
- put(b,ne,get(b,oe)) >>$
- procedure varyback(bb,b1)$
- % Performs full search of BB. B1 is B-BB. N is the number of
- % interpolations performed up to now.
- if null bb then
- begin
- scalar none,nhalf,n,eqg,i,j$
- n:=0$
- for each a in unvars do
- <<none:=nhalf:=0$
- i:=get(a,'nreq)$
- for each b in sunvars do
- <<j:=get(b,'nrvar)$
- none:=none + if get(b,'bxgrid) eq 'one then f2eval(i,j,0)
- else f2eval(i,j,1)$
- nhalf:=nhalf + if get(b,'bxgrid) eq 'half
- then f2eval(i,j,0)
- else f2eval(i,j,1) >>$
- put(a,'beq,if (eqg:=get(a,coord)) then eqg
- else if none<=nhalf then 'one
- else 'half)$
- n:=n + if eqg then
- if eqg eq 'one then none
- else if eqg eq 'half then nhalf
- else <<msgpri("VARYBACK ",eqg,nil,nil,'hold)$ 0>>
- else if none<=nhalf then none
- else nhalf >>$
- if n<intp then
- <<nbxgrid(b1,'xgrid,'eq,'bxgrid,'beq)$
- for each a in unvars do put(a,'eq,get(a,'beq))$
- intp:=n >>
- end
- else if intp=0 then t
- else <<varb(bb,b1,'one)$
- varb(bb,b1,'half) >>$
- procedure varb(bb,b1,xx)$
- % Subprocedure of VARYBACK procedure
- % In BB are temporary free variables
- % In B1 are temporary predefined variables (over BXGRID property)
- begin
- scalar x$
- x:=car bb$
- for each a in (x . get(x,'sames)) do
- put(a,'bxgrid,xx)$
- return varyback(cdr bb,x . b1)
- end$
- procedure iim4$
- begin
- scalar lh,rh,x,lhe,var$
- intp:=intp/6$
- prin2 intp$
- prin2 " interpolations are needed in "$
- prin2 coord$
- prin2t " coordinate"$
- for each a in unvars do
- <<prin2" Equation for "$
- prin2 a$
- prin2" variable is integrated in "$
- prin2 get(a,'eq)$
- prin2t" grid point" >>$
- interpolp:=t$
- put('intt,'simpfn,'simpinterpol)$
- lh:=lhs$
- rh:=rhs$
- x:=unvars$
- j:var:=car x$
- gvar:=get(var,'eq)$
- lhe:=car lh$
- alglist!*:=nil . nil$
- lhe:=prepsq simp lhe$
- rplaca(lh,lhe)$
- lhe:=car rh$
- lhe:=formlnr list('intt,lhe,coord)$
- lhe:=prepsq simp lhe$
- rplaca(rh,lhe)$
- x:=cdr x$
- lh:=cdr lh$
- rh:=cdr rh$
- if x then go to j$
- put('intt,'simpfn,'simpiden)$
- return lhs
- end$
- procedure iim5$
- begin
- scalar lh,rh,val,nreq,ar$
- val:=!*val$
- !*val:=nil$
- for each a in union(union(unvars,sunvars),given!*) do
- <<remprop(a,'xgrid)$
- remprop(a,'eq)$
- remprop(a,'nreq)$
- remprop(a,'nrvar)$
- remprop(a,'sames)$
- remprop(a,'none)$
- remprop(a,'nhalf)$
- remprop(a,'fone)$
- remprop(a,'fhalf) >>$
- remflag(given!*,'twogrid)$
- remflag(given!*,'noeq)$
- terpri()$
- prin2t " Equations after Discretization Using IIM :"$
- prin2t " =========================================="$
- terpri()$
- lh:=lhs$
- rh:=rhs$
- nreq:=0$
- k:rplaca(lh,prepsq!* simp!* car lh)$
- maprin car lh$
- prin2!* " = "$
- rplaca(rh,prepsq!* simp!* car rh)$
- maprin car rh$
- terpri!* t$
- terpri()$
- ar:=if null cdr lhs then list(resar,0) else list(resar,nreq,0)$
- setel(ar,car lh)$
- ar:=if null cdr lhs then list(resar,1) else list(resar,nreq,1)$
- setel(ar,car rh)$
- lh:=cdr lh$
- rh:=cdr rh$
- nreq:=nreq+1$
- if lh then go to k$
- !*val:=val$
- return nil
- end$
- put('iim,'stat,'rlis)$
- array difm!*(10)$
- procedure iscomposedof(x,objs,ops)$
- if null x then nil
- else if atom x then if idp x then memq(x,objs)
- else if fixp x then t
- else nil
- else if idp car x and car x memq ops and cdr x then
- iscompos(cdr x,objs,ops)
- else nil$
- procedure iscompos(x,objs,ops)$
- if null x then t
- else if idp car x then car x memq objs and iscompos(cdr x,objs,
- ops)
- else if numberp car x then iscompos(cdr x,objs,ops)
- else if atom car x then nil
- else if idp caar x then caar x memq ops and cdar x and
- iscompos(cdar x,objs,ops) and iscompos(cdr x,objs,ops)
- else nil$
- global'(difconst!* diffuncs!*)$
- difconst!* := '(i n di dim1 dip1 dim2 dip2)$
- diffuncs!*:=nil$
- procedure difconst u$
- difconst!* := append(u,difconst!*)$
- put('difconst,'stat,'rlis)$
- procedure diffunc u$
- <<diffuncs!*:=append(u,diffuncs!*)$
- for each a in u do put(a,'matcheq,'matchdfunc) >>$
- put('diffunc,'stat,'rlis)$
- procedure matchdfunc(u,v)$
- begin
- scalar x,y$
- return
- if null u and null v then list t
- else if null u or null v then nil
- else if (x:=matcheq(car u,car v)) and (y:=matchdfunc(cdr u,cdr v))
- then union(x,y)
- else nil
- end$
- procedure difmatch u$
- begin
- scalar l,gds,gdsf,pl,x,dx,y,z,coor$
- coor:=car u$
- if not atom coor then go to er$
- u:=cdr u$
- x:=car u$
- if not iscomposedof(x,'(u f x n v w g),
- append(diffuncs!*,'(diff times expt quotient recip)))then
- go to er$
- x:=prepsq simp x$
- l:=if atom x then 0 else length x$
- x:=x . nil$
- if null(y:=getel list('difm!*,l)) then setel(list('difm!*,l),list x)
- else if (z:=assoc(car x,y)) then x:=z
- else nconc(y,list x)$
- y:=cdr u$
- a:gds:=nil$
- gdsf:=nil$
- if not eqexpr car y then go to b$
- a1:if not(cadar y memq '(u v w f g) and caddar y memq grids!*) then
- go to er$
- if cadar y memq '(f g) then gdsf:=(cadar y . caddar y) . gdsf
- else gds:=(cadar y . caddar y) . gds$
- y:=cdr y$
- if null y then go to er$
- if eqexpr car y then go to a1$
- b:if not fixp car y then go to er$
- pl:=car y$
- y:=cdr y$
- if null y then go to er$
- if not iscomposedof(car y,difconst!*,append(diffuncs!*,'(u x f v w
- g plus minus difference times quotient recip expt)))then go to er$
- dx:=car y$
- y:=cdr y$
- gds:=nconc(gdsf,gds)$
- defdfmatch(x,gds,pl,list dx,coor)$
- if y then go to a$
- return nil$
- er:errpri2(y,'hold)
- end$
- procedure defdfmatch(x,gds,pl,dx,coor)$
- begin
- scalar y,z,yy$
- y:=get('difm!*,'grids)$
- if null y then put('difm!*,'grids,list gds)
- else if null gds then t
- else if (z:=acmemb(gds,y)) then gds:=z
- else nconc(y,list gds)$
- y:=cdr x$
- if y then
- if (yy:=atsoc(coor,y)) then
- if (z:=assoc(gds,cdr yy)) then
- <<rplacd(z,pl . dx)$
- msgpri(" Difference scheme for ",car x," redefined ",
- nil,nil) >>
- else nconc(cdr yy,list(gds . (pl . dx)))
- else nconc(y,list(coor . list(gds . (pl . dx))))
- else rplacd(x,list(coor . list(gds . (pl . dx))))$
- return y
- end$
- deflist('((difmatch rlis) (cleardifmatch endstat)),'stat)$
- procedure cleardifmatch$
- for i:=0:10 do difm!*(i):=nil$
- flag('(cleardifmatch),'eval)$
- procedure acmemb(u,v)$
- if null v then nil
- else if aceq(u,car v) then car v
- else acmemb(u,cdr v)$
- procedure aceq(u,v)$
- if null u then null v
- else if null v then nil
- else if car u member v then aceq(cdr u,delete(car u,v))
- else nil$
- procedure matcheq(u,v)$
- if null u or null v then nil
- else if numberp u then if u=v then list t else nil
- else if atom u then
- begin
- scalar x$
- x:=eval list(get(u,'matcheq),mkquote u,mkquote
- (if atom v then list v else v))$
- return
- if x then x
- else if null !*exp and pairp v and car v memq
- '(plus difference) then matchlinear(u,v)
- else nil
- end
- else if atom v then nil
- else if atom car u and car u eq car v then
- eval list(get(car u,'matcheq),mkquote cdr u,mkquote cdr v)
- else if null !*exp and car v memq'(plus difference)
- and car u eq 'diff then
- matchlinear(u,v)
- else nil$
- algebraic operator matchplus$
- fluid'(uu vv)$
- procedure matchlinear(u,v)$
- % Construction for OFF EXP and second and next coordinates
- begin
- scalar x,uu,vv,alg$
- if not atom u then return
- if car u eq 'diff then matchlindf(u,v)
- else if car u eq 'times then matchlintimes(u,v)
- else nil$
- uu:=u$
- vv:='first$
- x:=formlnr list('matchplus,v,coord)$
- put('matchplus,'simpfn,'matchp)$
- alg:=alglist!*$
- alglist!*:=nil . nil$
- simp x$
- alglist!*:=alg$
- put('matchplus,'simpfn,'simpiden)$
- return
- if vv then list(u . (if interpolp then v else vv))
- else nil
- end$
- procedure matchp y$
- begin
- scalar x$
- if null vv then return(nil . 1)$
- x:=matcheq(uu,car y)$
- if null x then return
- begin
- vv:=nil$
- return(nil . 1)
- end$
- if vv eq 'first then return
- begin
- vv:=cdar x$
- return (nil . 1)
- end$
- if mainvareq(vv,cdar x) then return (nil . 1)$
- vv:=nil$
- return(nil . 1)
- end$
- unfluid '(uu vv)$
- procedure mainvareq(x,y)$
- if atom x then eq(x,y)
- else if car x memq iobjs!* then eq(car x,car y)
- else if car x memq '(diff expt) then
- (car y eq car x and mainvareq(cadr x,cadr y) and cddr x=cddr y)
- else nil$
- procedure tlist x$
- if atom x then list x
- else x$
- procedure matchlindf(u,v)$
- begin
- scalar x,y,b$
- x:=mapcar(cdr v,function fsamedf)$
- y:=cdar x$
- if null y then return nil$
- x:=for each a in x collect if y=cdr a then car a
- else b:=t$
- if b then return nil$
- x:=(car v . x) . y$
- return matchdf(cdr u,x)
- end$
- procedure fsamedf u$
- begin
- scalar x$
- return
- if atom u then nil . nil
- else if car u eq 'minus then
- <<x:=fsamedf cadr u$
- list('minus,car x) . cdr x >>
- else if car u eq 'diff then cadr u . cddr u
- else if car u eq 'times then
- begin
- scalar y,z$
- x:=cdr u$
- a:if null x or y=t then go to b$
- if numberp car x then z:=car x . z
- else if eqcar(car x,'diff) then
- <<if y then y:=t
- else y:=cddar x$
- z:=cadar x . z >>
- else if depends(car x,coord) then y:=t
- else z:=car x . z$
- x:=cdr x$
- go to a$
- b:return if y=t then nil . nil
- else ('times . z) . y
- end
- else nil . nil
- end$
- procedure matchlintimes(u,v)$
- begin
- scalar x,y,z$
- y:=cadr v$
- if eqcar(y,'times) then y:=cdr y
- else if eqcar(y,'minus) and eqcar(cadr y,'times)
- then y:= (-1) . cdadr y
- else return nil$
- x:=for each a in cdr v collect
- if eqcar(a,'times) then <<y:=intersect(y,cdr a)$
- a>>
- else if eqcar(a,'minus) and eqcar(cadr a,'times) then
- <<y:=intersect(y,cdadr a)$
- 'times . ((-1) . cdadr a) >>
- else y:=nil$
- if null y then return nil$
- x:=for each a in x collect <<z:=setdiff(cdr a,y)$
- if null cdr z then car z
- else 'times . z >>$
- x:=car v . x$
- return matchtimes(cdr u,x . y)
- end$
- procedure intersect(u,v)$
- if null u or null v then nil
- else if member(car u,v) then car u . intersect(cdr u,v)
- else intersect(cdr u,v)$
- procedure matchu(u,v)$
- if car v memq unvars or (!*eqfu and car v memq given!*) then list(u . v)
- else if car v eq 'diff and not coord memq cddr v
- and matcheq(u,tlist cadr v)
- then list(u . (car v . (tlist cadr v . cddr v)))
- else if car v eq 'times then
- % Product can be inside brackets or in DIFF
- begin
- scalar x,b1,vv$
- x:=for each a in cdr v collect a$ % To allow RPLACA
- vv:=car v . x$
- b1:=0$
- while x and b1<2 do
- <<if depends(car x,coord) then
- <<b1:=b1+1$
- if atom car x then rplaca(x,list car x) >>$
- x:=cdr x >>$
- return if b1=0 or b1>1 then nil
- else (u . vv)
- end
- else nil$
- put('u,'matcheq,'matchu)$
- put('v,'matcheq,'matchu)$
- put('w,'matcheq,'matchu)$
- procedure matchf(u,v)$
- if car v memq given!* then list(u . v)
- else if car v eq 'diff and not coord memq cddr v
- and matchf(u,tlist cadr v)
- then list(u . (car v . (tlist cadr v . cddr v)))
- else nil$
- put('f,'matcheq,'matchf)$
- put('g,'matcheq,'matchf)$
- procedure matchx(u,v)$
- if car v eq coord then list t
- else nil$
- put('x,'matcheq,'matchx)$
- procedure matchtimes(u,v)$
- begin
- scalar bool,bo,x,y,y1,asl$
- x:=u$
- a:y:=t . v$
- d:bool:=nil$
- while not bool and cdr y do
- <<y:=cdr y$
- bool:=matcheq(car x,car y)>>$
- if null bool then go to b$
- bo:=bool$
- c: if not atom bo and not atom car bo then y1:=atsoc(caar bo,asl)
- else y1 := nil$
- if y1 and not y1=car bo then go to d$
- bo:=cdr bo$
- if bo then go to c$
- v:=delete(car y,v)$
- x:=cdr x$
- asl:=union(bool,asl)$
- if x then go to a$
- if v then return nil$
- return asl$
- b:return if null cdr v and cdr x then
- if y:=matcheq('times . x,car v) then union(asl,y)
- else nil
- else nil
- end$
- put('times,'matcheq,'matchtimes)$
- procedure matchexpt(u,v)$
- if fixp cadr u then
- if cadr u=cadr v then matcheq(car u,car v)
- else nil
- else if cadr u='n then
- begin
- scalar x$
- x:=matcheq(car u,car v)$
- return if x then (('n . cadr v) . x)
- else nil
- end
- else nil$
- put('expt,'matcheq,'matchexpt)$
- procedure matchquot(u,v)$
- begin
- scalar man,mad$
- return if(man:=matcheq(car u,car v))
- and (mad:=matcheq(cadr u,cadr v)) then
- union(man,mad)
- else nil
- end$
- put('quotient,'matcheq,'matchquot)$
- procedure matchrecip(u,v)$
- matcheq(car u,car v)$
- put('recip,'matcheq,'matchrecip)$
- procedure matchdf(u,v)$
- begin
- scalar x,asl,y$
- asl:=matcheq(car u,car v)$
- if null asl then return nil$
- y:=x:=append(cdr v,nil)$
- while x and car x neq coord do x:=cdr x$
- if null x then return nil
- else if null cddr u then
- if null cdr x or idp cadr x then go to df1
- else return nil
- else if cdr x and caddr u=cadr x then t
- else return nil$
- rplacd(x,cddr x)$
- df1:y:=delete(coord,y)$
- if null y or null interpolp then return asl
- % !!! Be aware !!! in mixed derivations of product
- else return list(car u . ('diff . (cdar asl . y)))
- end$
- put('diff,'matcheq,'matchdf)$
- procedure finddifm u$
- begin
- scalar x,v,asl,eqfu,b,bfntwo,bftwo1$
- eqfu:=!*eqfu$
- if eqfu then !*eqfu:=nil$
- a:x:=t . difml!*$
- bftwo1:=bfntwo$
- bfntwo:=nil$
- if !*eqfu then b:=t$
- while cdr x and not asl do
- <<x:=cdr x$
- asl:=matcheq(caar x,u)$
- % Test for given variables of type F, which have to be on one grid,
- % if choosed substitution from DIFMATCH contains definition of F
- % on grids.
- if asl then for each a in asl do
- if not atom a and car a memq'(f g) and (cadr a memq novars or
- (null !*twogrid and cadr a memq sunvars)) and
- null atsoc(car a,caadar x) then bfntwo:=t$
- if bfntwo then asl:=nil >>$
- !*eqfu:=eqfu$
- if null asl then
- if null b and eqfu then go to a
- else go to nm$
- return list(('x . coord) . delete(t,asl),cdar x)$
- nm:if eqcar(u,'times) and null !*exp then
- <<!*exp:=t$
- alglist!*:=nil . nil$
- v:=prepsq simp u$
- v:=formlnr list('intt,v,coord)$
- !*exp:=nil$
- if null atom v and car v memq'(plus difference) then
- return ('special . simp v) >>$
- msgpri(" Matching of ",u," term not find ",nil,'hold)$
- if bfntwo or bftwo1 then
- lprie(" Variable of type F not defined on grids in DIFMATCH")$
- return nil
- end$
- procedure tdifpair x$
- % From CDR ATSOC(.,ASL) makes an atom - free variable
- <<if eqcar(x,'diff) then
- if eqcar(cadr x,'times) then
- <<x:=cdadr x$
- while x and not depends(car x,coord) do x:=cdr x$
- x:=car x>>
- else x:=cadr x$
- if pairp x then x:=car x$
- x >>$
- procedure simpintt u$
- begin
- scalar asl,agdsl,l,x,nv,y,x1,y1,nv1,n1,n2,nn1,nn2,
- x2,y2,nv2,n3,n4,n5,n6,lgrids,gds$
- u:=prepsq simp car u$
- if u=1
- then go to r$
- asl:=finddifm u$
- if null asl or eqcar(asl,'special) then go to r$
- agdsl:=cadr asl$ % List from DIFML!*
- asl:=car asl$ % ASOC. list of assignments
- gds:=caar agdsl$
- l:=length gds$
- if l=0 then go to r$
- a:y:=caar gds$
- x:=atsoc(y,asl)$
- if null x then go to er1$
- x:=tdifpair cdr x$
- if !*twogrid and flagp(x,'twogrid) then
- if l=1 then go to r
- else <<gds:=cdr gds$
- l:=l-1$
- go to a>>$
- nv:=ngetvar(x,'nrvar)$
- if l=1 then go to l1
- else go to l2$
- l1:x:=assoc(list(y . 'one),agdsl)$
- if null x then go to er2$
- f2plus(nvar,nv,0,6*cadr x)$
- x:=assoc(list(y . 'half),agdsl)$
- if null x then go to er2$
- f2plus(nvar,nv,1,6*cadr x)$
- go to r$
- l2:y1:=caadr gds$
- x1:=atsoc(y1,asl)$
- if null x1 then go to er1$
- x1:=tdifpair cdr x1$
- if !*twogrid and flagp(x1,'twogrid) then
- if l=2 then go to l1
- else <<gds:=cdr gds$
- l:=l-1$
- go to l2 >>$
- nv1:=ngetvar(x1,'nrvar)$
- lgrids:=get('difm!*,'grids)$
- if l=3 then go to l3
- else if l>3 then go to er$
- l20:n1:=atsoc(acmemb(list(y . 'one,y1 . 'one),lgrids),agdsl)$
- n2:=atsoc(acmemb(list(y . 'one,y1 . 'half),lgrids),agdsl)$
- nn1:=atsoc(acmemb(list(y . 'half,y1 . 'half),lgrids),agdsl)$
- nn2:=atsoc(acmemb(list(y . 'half,y1 . 'one),lgrids),agdsl)$
- if n1 and n2 and nn1 and nn2 then t
- else go to er2$
- n1:=cadr n1$
- n2:=cadr n2$
- nn1:=cadr nn1$
- nn2:=cadr nn2$
- l21:add2sint(nv,nv1,x,x1,n1,n2,nn1,nn2)$
- go to r$
- l3:y2:=caaddr gds$
- x2:=atsoc(y2,asl)$
- if null x2 then go to er1$
- x2:=tdifpair cdr x2$
- if !*twogrid and flagp(x2,'twogrid) then go to l20$
- nv2:=ngetvar(x2,'nrvar)$
- n1:=atsoc(acmemb(list(y . 'one,y1 . 'one,y2 . 'one),lgrids),agdsl)$
- n2:=atsoc(acmemb(list(y . 'half,y1 . 'half,y2 . 'half),lgrids),agdsl)$
- nn1:=atsoc(acmemb(list(y . 'one,y1 . 'one,y2 . 'half),lgrids),agdsl)$
- nn2:=atsoc(acmemb(list(y . 'half,y1 . 'half,y2 . 'one),lgrids),agdsl)$
- n3:=atsoc(acmemb(list(y . 'one,y1 . 'half,y2 . 'one),lgrids),agdsl)$
- n4:=atsoc(acmemb(list(y . 'half,y1 . 'one,y2 . 'half),lgrids),agdsl)$
- n5:=atsoc(acmemb(list(y . 'one,y1 . 'half,y2 . 'half),lgrids),agdsl)$
- n6:=atsoc(acmemb(list(y . 'half,y1 . 'one,y2 . 'one),lgrids),agdsl)$
- if n1 and n2 and nn1 and nn2 and n3 and n4 and n5 and n6 then t
- else go to er2$
- n1:=cadr n1$
- n2:= cadr n2$
- nn1:=cadr nn1$
- nn2:=cadr nn2$
- n3:=cadr n3$
- n4:=cadr n4$
- n5:=cadr n5$
- n6:=cadr n6$
- if n1=nn1 and n2=nn2 and n3=n5 and n4=n6 then
- <<n2:=n3$
- nn1:=nn2$
- nn2:=n4$
- go to l21 >>
- else if n1=n3 and n2=n4 and nn1=n5 and nn2=n6 then
- <<n2:=nn1$
- nn1:=n4$
- x1:=x2$
- nv1:=nv2$
- go to l21 >>
- else if n1=n6 and n2=n5 and nn1=n4 and nn2=n3 then
- <<n2:=nn2$
- nn1:=n5:
- nn2:=n4$
- x:=x2$
- nv:=nv2$
- go to l21 >>$
- add3sint(nv,nv1,nv2,x,x1,x2,n1,n2,n3,n4,n5,n6,nn1,nn2)$
- r:return (nil . 1)$
- er:msgpri(nil,l," Free vars not yet implemented ",nil,'hold)$
- go to r$
- er1:msgpri(" Failed matching of variables in ",
- u,list(asl,agdsl),nil,'hold)$
- go to r$
- er2:msgpri(" All grids not given for term ",u,list(asl,agdsl),
- nil,'hold)$
- go to r
- end$
- procedure add2sint(nv,nv1,x,x1,n1,n2,nn1,nn2)$
- begin
- % Enhansment for symmetries, when only one variable influence
- if n1=n2 and nn1=nn2 then
- <<f2plus(nvar,nv,0,6*n1)$
- f2plus(nvar,nv,1,6*nn1)$
- return >>
- else if n1=nn2 and n2=nn1 then
- <<f2plus(nvar,nv1,0,6*n1)$
- f2plus(nvar,nv1,1,6*n2)$
- return >>$
- n1:=3*n1$
- n2:=3*n2$
- nn1:=3*nn1$
- nn2:=3*nn2$
- x:=list(x,x1)$
- f2plus(nvar,nv,0,list(x,n1,n2))$
- f2plus(nvar,nv,1,list(x,nn1,nn2))$
- x:=reverse x$
- f2plus(nvar,nv1,0,list(x,n1,nn2))$
- f2plus(nvar,nv1,1,list(x,nn1,n2))$
- return
- end$
- procedure add3sint(nv,nv1,nv2,x,x1,x2,n1,n2,n3,n4,n5,n6,nn1,nn2)$
- begin
- n1:=2*n1$
- n2:=2*n2$
- nn1:=2*nn1$
- nn2:=2*nn2$
- n3:=2*n3$
- n4:=2*n4$
- n5:=2*n5$
- n6:=2*n6$
- x:=list(x,x1,x2)$
- f2plus(nvar,nv,0,list(x,n1,nn1,n3,n5))$
- f2plus(nvar,nv,1,list(x,n2,nn2,n4,n6))$
- f2plus(nvar,nv1,0,list(x,n1,nn1,n4,n6))$
- f2plus(nvar,nv1,1,list(x,n2,nn2,n3,n5))$
- f2plus(nvar,nv2,0,list(x,n1,nn2,n3,n6))$
- f2plus(nvar,nv2,1,list(x,n2,nn1,n4,n5))$
- return
- end$
- procedure simpinterpol u$
- begin
- scalar asl,agdsl,gds,x,y,xx,a$
- u:=prepsq simp car u$
- if eqcar(u,'diff) and not coord memq cddr u then
- % !!!! Be aware !!!! could not work for mixed derivatives
- return <<asl:=!*exp$
- !*exp:=t$
- u:= simp formlnr('diff . (prepsq simp formlnr
- list('intt,cadr u,coord) . cddr u))$
- !*exp:=asl$
- u>>$
- asl:=finddifm u$
- if null asl then return (nil . 1)
- else if eqcar(asl,'special) then return cdr asl$
- agdsl:=cadr asl$ % Actual list from DIFML!*, contains definition
- % of grid, penalty and diff. scheme
- asl:=car asl$ % Assoc. list of assignments of variables X,U,V,W
- % to actual variables
- if not gvar memq grids!* then go to erg$
- asl:=append(asl,get('steps,gvar))$ % Adding DIM1, DIP1 ... to assoc.
- % list
- if null caar agdsl then return simp sublap(asl,caddar agdsl)$ % For
- a:=caar agdsl$ % DIFMATCH without def. grids
- b:if null a then go to c$
- y:=caar a$
- x:=atsoc(y,asl)$
- if null x then go to er1$ % GDS is assoc. list of actual
- xx:=cdr x$ % assignments of grids to
- x:=getgrid xx$ % variables U, V
- if gvar eq 'half then x:=gnot x$
- if !*twogrid and twogridp xx then t
- else gds:=(y . x) . gds$
- a:=cdr a$
- go to b$
- c:if null gds then go to a$ % For given functions which can be on
- y:=get('difm!*,'grids)$ % both grids
- x:=acmemb(gds,y)$ % Unique GDS
- if null x then go to er1$
- gds:=x$
- a:x:=assoc(gds,agdsl)$
- if null x then go to erg$
- x:=caddr x$ % Actual difference scheme
- return simp sublap(asl,x)$
- er1:msgpri(" Failed matching of ",u,list(asl,agdsl,gds),nil,
- 'hold)$
- return (nil . 1)$
- erg:msgpri(" Bad grids ",u,list(asl,agdsl,gds),nil,'hold)$
- return (nil . 1)
- end$
- procedure twogridp u$
- % Checks if prefix form U can be on both grids
- begin
- scalar x$
- return
- if atom u then
- if flagp(u,'twogrid) then
- if !*twogrid and u memq given!* and
- getel list(get(u,'grid),ncor) then nil
- else t
- else nil
- else if flagp(car u,'twogrid) then
- if !*twogrid and car u memq given!* and
- getel list(get(car u,'grid),ncor) then nil
- else t
- else if car u memq '(diff plus difference) then twogridp cadr u
- else if car u eq 'times then twogridpti cdr u
- else nil
- end$
- procedure twogridpti u$
- begin
- scalar x$
- a:x:=twogridp car u$
- if x then return x$
- u:=cdr u$
- if u then go to a$
- return nil
- end$
- procedure getgrid u$
- begin
- scalar x$
- return
- if atom u then
- if x:=get(u,'xgrid) then x
- else if !*twogrid and u memq given!* and
- (x:=getel list(get(u,'grid),ncor)) then car x
- else nil
- else if (x:=get(car u,'xgrid)) then x
- else if !*twogrid and car u memq given!* and
- (x:=getel list(get(car u,'grid),ncor)) then car x
- else if car u eq 'diff then
- if atom cadr u then getgrid cadr u
- %else if caadr u eq 'times then % probably can
- % if (x:=getgrid cadadr u) then x % be deleted
- % else getgrid caddr cadr u % !!!!!"!!!
- else getgrid cadr u
- else if car u memq '(plus difference) then getgrid cadr u
- else if car u eq 'times then getgti cdr u
- else nil
- end$
- procedure getgti u$
- begin
- scalar x$
- a:x:=getgrid car u$
- if x then return x$
- u:=cdr u$
- if u then go to a$
- return nil
- end$
- procedure sublap(u,v)$
- % U is assoc. list, V is pattern diff. scheme
- % Performs substitution of assod. list into the diff. scheme
- begin
- scalar x$
- return
- if null u or null v then v
- else if atom v then
- if numberp v then v
- else if x:=atsoc(v,u) then cdr x
- else v
- else if flagp(car v,'app) then sublap1(u,v)
- else (sublap(u,car v) . sublap(u,cdr v))
- end$
- flag('(u f v w x g),'app)$
- procedure sublap1(u,v)$
- begin
- scalar x,y$
- x:=atsoc(car v,u)$
- if null x then return msgpri(" Substitution for ",v," not find",
- nil,'hold)$
- x:=cdr x$
- y:=mapcar(cdr v,function(lambda a$irev sublap(u,a)))$
- return
- if eqcar(x,'diff) then ('diff . (subappend(cadr x,y) . cddr x))
- else subappend(x,y)
- end$
- procedure subappend(x,y)$
- if atom x then if x memq iobjs!* and depends(x,coord) then (x . y)
- else x
- else if car x memq iobjs!* and depends(car x,coord) then append(x,y)
- else (car x . mapcar(cdr x,function(lambda a$
- subappend(a,y))))$
- procedure irev u$
- begin
- u:=simp u$
- return
- if cdaaar u=1 and cdaar u=cdr u and fixp cdar u then
- if cdr u=1 then
- if cdar u<0 then list('difference,
- caaaar u,
- -cdar u)
- else list('plus,
- caaaar u,
- cdar u)
- else if cdar u<0 then list('difference,
- caaaar u,
- list('quotient,
- -cdar u,
- cdr u))
- else list('plus,
- caaaar u,
- list('quotient,
- cdar u,
- cdr u))
- else prepsq u
- end$
- unfluid '(coord unvars sunvars interpolp novars ncor nvar intp icor gvar
- hi hip1 hip2 him1 him2 lhs rhs lsun lun xxgrid resar)$
- procedure gentempst$
- list('gentemp,xread t)$
- put('gentemp,'stat,'gentempst)$
- put('gentemp,'formfn,'formgentran)$
- put('outtemp,'stat,'endstat)$
- flag('(outtemp),'eval)$
- algebraic$
- endmodule$
- end$
|