12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- % test symmetry package
- % implementation of theory of linear representations
- % for small groups
- availablegroups();
- printgroup(D4);
- generators(D4);
- charactertable(D4);
- characternr(D4,1);
- characternr(D4,2);
- characternr(D4,3);
- characternr(D4,4);
- characternr(D4,5);
- irreduciblereptable(D4);
- irreduciblerepnr(D4,1);
- irreduciblerepnr(D4,2);
- irreduciblerepnr(D4,3);
- irreduciblerepnr(D4,4);
- irreduciblerepnr(D4,5);
- rr:=mat((1,0,0,0,0),
- (0,0,1,0,0),
- (0,0,0,1,0),
- (0,0,0,0,1),
- (0,1,0,0,0));
- sp:=mat((1,0,0,0,0),
- (0,0,1,0,0),
- (0,1,0,0,0),
- (0,0,0,0,1),
- (0,0,0,1,0));
- rep:={D4,rD4=rr,sD4=sp};
- canonicaldecomposition(rep);
- character(rep);
- symmetrybasis(rep,1);
- symmetrybasis(rep,2);
- symmetrybasis(rep,3);
- symmetrybasis(rep,4);
- symmetrybasis(rep,5);
- symmetrybasispart(rep,5);
- allsymmetrybases(rep);
- % Ritz matrix from Stiefel, Faessler p. 200
- m:=mat((eps,a,a,a,a),
- (a ,d,b,g,b),
- (a ,b,d,b,g),
- (a ,g,b,d,b),
- (a ,b,g,b,d));
- diagonalize(m,rep);
- % eigenvalues are obvious. Eigenvectors may be obtained with
- % the coordinate transformation matrix given by allsymmetrybases.
- r1:=mat((0,1,0),
- (0,0,1),
- (1,0,0));
- repC3:={C3,rC3=r1};
- mC3:=mat((a,b,c),
- (c,a,b),
- (b,c,a));
- diagonalize(mC3,repC3);
- % note difference between real and complex case
- on complex;
- diagonalize(mC3,repC3);
- off complex;
- end;
|