123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804 |
- module codad1; % Description of some procedures.
- % ------------------------------------------------------------------- ;
- % Copyright : J.A. van Hulzen, Twente University, Dept. of Computer ;
- % Science, P.O.Box 217, 7500 AE Enschede, the Netherlands.;
- % Authors : J.A. van Hulzen, B.J.A. Hulshof, W.N. Borst. ;
- % ------------------------------------------------------------------- ;
- symbolic$
- % ------------------------------------------------------------------- ;
- % The module CODAD1 contains the description of the procedures ;
- % IMPROVELAYOUT (part 1), TCHSCHEME (part 2) and CODFAC (part 3), ;
- % which are used in the procedure OPTIMIZELOOP (see the module CODCTL);
- % to complete the effect of an application of EXTBRSEA (see the module;
- % CODOPT). Application of each of these routines is completed by re- ;
- % turning a Boolean value, which is used to decide if further optimi- ;
- % zation is still profitable. ;
- % The Smacro's Find!+Var and Find!*Var form service facilities, needed;
- % at different places in this module. These Smacro's define an applic-;
- % ation of the procedure GetCind. ;
- % ------------------------------------------------------------------- ;
- % ------------------------------------------------------------------- ;
- % Global identifiers needed in this module are: ;
- % ------------------------------------------------------------------- ;
- global '(rowmin rowmax kvarlst codbexl!*);
- % ------------------------------------------------------------------- ;
- % The meaning of these globals is given in the module CODMAT. ;
- % ------------------------------------------------------------------- ;
- symbolic procedure getcind(var,varlst,op,fa,iv);
- % ------------------------------------------------------------------- ;
- % The purpose of the procedure GetCind is to create a column in CODMAT;
- % which will be associated with the variable Var if this variable does;
- % not yet belong to the set Varlst,i.e.does not yet play a role in the;
- % corresponding PLUS- or TIMES setting (known by the value of Op).Once;
- % the column exists (either created or already available), its Zstrt ;
- % is modified by inserting the Z-element (Fa,IV) in it. Finally the ;
- % corresponding Z-element for the father-row, i.e. (Y,IV) is returned.;
- % ------------------------------------------------------------------- ;
- begin scalar y,z;
- if null(y:=get(var,varlst))
- then
- <<y:=rowmin:=rowmin-1;
- put(var,varlst,y);
- setrow(y,op,var,nil,nil)
- >>;
- setzstrt(y,inszzzn(z:=mkzel(fa,iv),zstrt y));
- return mkzel(y,val z)
- end;
-
- symbolic smacro procedure find!+var(var,fa,iv);
- getcind(var,'varlst!+,'plus,fa,iv);
- symbolic smacro procedure find!*var(var,fa,iv);
- getcind(var,'varlst!*,'times,fa,iv);
- % ------------------------------------------------------------------- ;
- % PART 1 : LAYOUT IMPROVEMENT ;
- % ------------------------------------------------------------------- ;
- symbolic procedure improvelayout;
- % ------------------------------------------------------------------- ;
- % During optimization, and thus during common subexpression generation;
- % it might happen that a (sub)expression is reduced to a single varia-;
- % ble, leading to output containing the assignment statements : ;
- % b:=b-thing; ;
- % ...... ;
- % a:=b; ;
- % This redundancy can be removed by replacing all occurrences of b by ;
- % a, by replacing b:=b-thing by a:=b=thing and by removing a:=b. Here ;
- % we assume a,b to be only cse-names. ;
- % ------------------------------------------------------------------- ;
- begin scalar var,b;
- for x:=0:rowmax do
- if not (numberp(var:=farvar x)
- or
- pairp(var)
- or
- (member(x,codbexl!*)
- and
- (get(var,'nex) or
- not(flagp(var, 'newsym)) or
- get(var,'alias)
- % or not(get(var,'alias)) % JB 10/3/94
- % finds no cse in p.e. cos(e^s6),sin(e^s6)
- )))
- and testononeel(var,x) then b:=t;
- % ----------------------------------------------------------------- ;
- % If B=T redundancy was removed from CODMAT, but not necessarily ;
- % from Kvarlst, the list of pairs of kernels and names associated ;
- % with them. ImproveKvarlst is applied to achieve this. ;
- % ----------------------------------------------------------------- ;
- if b then improvekvarlst();
- return b
- end;
- symbolic procedure testononeel(var,x);
- % ------------------------------------------------------------------- ;
- % Row X,having Var as its assigned variable, and defining some expres-;
- % sion, through its Zstrt, Chrow and ExpCof, is analysed. ;
- % If this row defines a redundant assignment statement the above indi-;
- % cated actions are performed. ;
- % ------------------------------------------------------------------- ;
- begin
- scalar scol,srow,el,signiv,signec,zz,ordrx,negcof,trow,
- oldvar,b,el1,scof,bop!+,lhs;
- if (zz:=zstrt x) and null(cdr zz) and null(chrow x) and
- !:onep(dm!-abs(signiv:=ival(el:=car zz))) and
- !:onep(signec:=expcof(x))
- % !:onep(dm!-abs(signec:=expcof(x)))
- % This could mean a:=b^(-1), which is rather tricky to update
- % when b is used in other plusrows. JB. 7-5-93.
- then
- << % ------------------------------------------------------------- ;
- % Row(X) defines a Zstreet, consisting of one Z-element. The ;
- % variable-name, associated with this element is stored in the ;
- % FarVar-field of the column, whose index is in the Yind-part of;
- % this Z-element,i.e. Oldvar:=FarVar(SCol),the b mentioned above;
- % The IVal-value of this element, an exponent or a coefficient, ;
- % is 1 or -1 and the ExpCof-value, a coefficient or an exponent,;
- % is also 1 or -1. Realistic possibilities are of course only ;
- % 1*Oldvar^1 or -1*Oldvar^1 (i.e. 1*b^1 or -1*b^1). ;
- % ------------------------------------------------------------- ;
- scol:=yind el;
- oldvar:=farvar(scol);
- if srow:=get(oldvar,'rowindex)
- then b:=t
- else
- if assoc(oldvar,kvarlst) and
- !:onep(signiv) and !:onep(signec) and
- not member(oldvar,codbexl!*)
- then b:=t;
- % ------------------------------------------------------------- ;
- % So B=T if either Oldvar has its own defining row, whose index ;
- % is stored as value of the indicator Rowindex, i.e. if Oldvar ;
- % defines a cse, or if Oldvar is the name of a kernel, stored in;
- % Kvarlst, as cdr-part of the pair having Oldvar as its car-part;
- % ------------------------------------------------------------- ;
- if b
- then
- << % ------------------------------------------------------- ;
- % We start replacing all occurrences of Oldvar by Var, in ;
- % both the PLUS- and the TIMES-part of CODMAT, by applying;
- % the function TShrinkCol. In addition all eventually exis;
- % ting occurences of Oldvar in Kvarlst have to replaced as;
- % well by Var(,the a mentioned above). ;
- % ------------------------------------------------------- ;
- setzstrt(scol,delyzz(x,zstrt scol));
- tshrinkcol(oldvar,var,'varlst!+);
- tshrinkcol(oldvar,var,'varlst!*);
- if ((opval(x) eq 'plus) and !:onep(dm!-minus signiv))
- or
- ((opval(x) eq 'times) and !:onep(dm!-minus signec))
- then << var:=list('minus,var);
- kvarlst:=subst(var,oldvar,kvarlst);
- preprefixlist:=subst(var,oldvar,preprefixlist);
- var:=cadr var;
- negcof:=-1
- >>
- else << kvarlst:=subst(var,oldvar,kvarlst);
- preprefixlist:=subst(var,oldvar,preprefixlist);
- negcof:=1
- >>;
- if (lhs:=get(oldvar,'inlhs))
- then
- << put(lhs,'nex,subst(var,oldvar,get(lhs,'nex)));
- remprop(oldvar,'inlhs)>>;
- if (lhs:=get(oldvar,'inalias))
- then
- << updatealiases(oldvar,var);
- %put(lhs,'alias,subst(var,oldvar,get(lhs,'alias)));
- remprop(oldvar,'inalias)>>;
- if srow
- then
- << % --------------------------------------------------- ;
- % Oldvar is the name of a cse, defined through the row;
- % index Srow. So this cse-definition has to be assign-;
- % ed to Var as new value and the Srow itself has to be;
- % made redundant. The Ordr-field of Var has to be chan;
- % ged to be able to remain guaranteeing a correct out-;
- % put sequence. ;
- % --------------------------------------------------- ;
- ordrx:=ordr(x);
- bop!+:=opval(srow) eq 'plus;
- if bop!+ then scof:=expcof srow
- else scof:=dm!-times(negcof,expcof(srow));
- setrow(x,opval srow,var,list(chrow srow,scof),
- zstrt srow);
- setordr(x,append(ordr srow,remordr(srow,ordrx)));
- if !:onep(dm!-minus signiv)
- then
- <<foreach z in zstrt(scol) do
- setival(z,dm!-minus ival(z));
- foreach ch in chrow(x) do
- setexpcof(ch,dm!-minus expcof(ch));
- if trow:=get(var,'varlst!*) then
- foreach el in zstrt(trow) do
- setexpcof(xind el, dm!-minus expcof(xind el));
- >>;
- foreach ch in chrow(srow) do setfarvar(ch,x);
- clearrow(srow);
- setordr(srow,nil);
- codbexl!*:=subst(x,srow,codbexl!*);
- foreach z in zstrt(x) do
- <<if bop!+ then setival(z,dm!-times(signiv,ival(z)));
- setzstrt(yind z,inszzz(mkzel(x,val z),
- delyzz(srow,zstrt yind z)))
- >>;
- for sindex:=0:rowmax
- do setordr(sindex,subst(x,srow,ordr sindex));
- testononeel(var,x)
- >>
- else
- << % --------------------------------------------------- ;
- % Oldvar is the system-generated name of a kernel. ;
- % The internal administration is modified, as to pro- ;
- % vide Var with its new role. ;
- % As a side-effect the index X of the kernel defining ;
- % row is replaced in CodBexl!* by the name Var, if oc-;
- % curring of course, i.e. if this function definition ;
- % was given at toplevel on input. ;
- % This information is used in ImproveKvarlst. ;
- % --------------------------------------------------- ;
- codbexl!*:=subst(var,x,codbexl!*);
- ordrx:=remordr(oldvar,ordr x);
- clearrow(x);
- setordr(x,nil);
- for sindex:=0:rowmax do
- setordr(sindex,
- updordr(ordr sindex,var,oldvar,ordrx,x));
- improvekvarlst()
- >>;
- >>
- >>;
- return b;
- end$
- symbolic procedure remordr(x,olst);
- % ------------------------------------------------------------------- ;
- % Olst is the value of the Ordr-field of a row of CODMAT. Olst defines;
- % in which order the cse's, occurring in the (sub)expression, whose ;
- % description starts in this row, have to be printed ahead of this ;
- % (sub)expression. It is a list of kernelnames and/or indices of rows ;
- % where cse-descriptions start. ;
- % RemOrdr returns Olst after removal of X, if occcurring. ;
- % ------------------------------------------------------------------- ;
- if null(olst)
- then olst
- else
- if car(olst)=x
- then remordr(x,cdr olst)
- else car(olst).remordr(x,cdr olst);
- symbolic procedure updordr(olst,var,oldvar,ordrx,x);
- % ------------------------------------------------------------------- ;
- % Olst is described in RemOrdr. OrdrX is the Olst of row X after remo-;
- % val Oldvar from it. Row X defines Var:=Oldvar. Oldvar, a kernelname,;
- % is replaced by Var in Olst. If X is occurring in Olst OrdrX have to ;
- % be inserted in Olst. The thus modified version of Olst is returned. ;
- % ------------------------------------------------------------------- ;
- if null(olst)
- then olst
- else
- if car(olst) eq oldvar
- then var.updordr(cdr olst,var,oldvar,ordrx,x)
- else
- if car(olst)=x
- then append(var.ordrx,updordr(cdr olst,var,oldvar,ordrx,x))
- else car(olst).updordr(cdr olst,var,oldvar,ordrx,x);
- symbolic procedure improvekvarlst;
- % ------------------------------------------------------------------- ;
- % Kvarlst, a list of pairs (name . function definition) is improved,if;
- % necessary. This is only required if in the list CodBexl!* occuring ;
- % names are not yet used in Kvarlst. Hence adequate rewriting of ;
- % b:=sin(x) ;
- % ........ ;
- % a:=b ;
- % into ;
- % a:=sin(x) is needed,i.e. replacement of (b . sin(x)) by (a . sin(x));
- % in Kvarlst. ;
- % ------------------------------------------------------------------- ;
- begin scalar invkvl,newkvl,x,y,kv,lkvl,cd,cd1;
- newkvl:=kvarlst;
- repeat
- <<lkvl:=kvarlst:=newkvl;
- invkvl:=newkvl:=nil;
- while lkvl do
- <<kv:=car(lkvl);
- lkvl:=cdr(lkvl);
- cd1:=member(car kv,codbexl!*);
- x:=assoc(cdr kv,invkvl);
- if x
- then cd:=(cd1 and member(cdr x,codbexl!*));
- if x and not cd
- then
- <<kv:=car(kv);
- x:=cdr(x);
- if cd1
- then <<y:=x;
- x:=kv;
- kv:=y>>;
- tshrinkcol(kv,x,'varlst!+);
- tshrinkcol(kv,x,'varlst!*);
- for rindx:=0:rowmax do
- setordr(rindx,subst(x,kv,ordr rindx));
- newkvl:=subst(x,kv,newkvl);
- invkvl:=subst(x,kv,invkvl);
- lkvl:=subst(x,kv,lkvl)
- >>
- else
- <<invkvl:=(cdr(kv).car(kv)).invkvl;
- newkvl:=kv.newkvl
- >>
- >>
- >>
- until length(kvarlst)=length(newkvl);
- end;
- symbolic procedure tshrinkcol(oldvar,var,varlst);
- % ------------------------------------------------------------------- ;
- % All occurrences of Oldvar have to be replaced by Var. This is done ;
- % by replacing the PLUS and TIMES column-indices of Oldvar by the cor-;
- % responding indices of Var. Y1 and Y2 get the value of the Oldvar- ;
- % index and the Var-index, respectively. As a side-effect, all additi-;
- % onal information, stored in the property-list of Oldvar is removed. ;
- % ------------------------------------------------------------------- ;
- begin scalar y1,y2;
- if get(oldvar,'inalias)
- then updatealiases(oldvar, var);
- if y1:=get(oldvar,varlst)
- then
- <<if y2:=get(var,varlst)
- then
- <<foreach z in zstrt(y1) do
- <<setzstrt(y2,inszzzn(z,zstrt y2));
- setzstrt(xind z,inszzzr(mkzel(y2,val z),
- delyzz(y1,zstrt xind z)))
- >>;
- clearrow(y1)
- >>
- else
- <<setfarvar(y1,var);
- put(var,varlst,y1)
- >>;
- remprop(oldvar,varlst)
- >>;
- remprop(oldvar,'npcdvar);
- remprop(oldvar,'nvarlst);
- end;
- symbolic procedure updatealiases(old, new);
- % ----------------------------------------------------------------- ;
- % Variable old is going to be replaced by new.
- % We hav eto ensure that the alias-linking remains
- % consistent. This means that the following has to
- % be updated:
- % Occurrence-info of index-alias:
- % new.inalias <- old.inalias
- % The aliased vars have to be informed that the alias
- % is performed by a new variable:
- % alias <- new|old
- % original.finalalias <- new|old
- % where A|B means : replace B by A.
- % ----------------------------------------------------------------- ;
- begin scalar original;
- put(new,'inalias,get(old,'inalias));
- flag(list new,'aliasnewsym);
- foreach el in get(old,'inalias) do
- <<put(el,'alias,subst(new,old,(original:=get(el,'alias))));
- if atom original
- then put(original,'finalalias,
- subst(new, old, get(original,'finalalias)))
- else put(car original,'finalalias,
- subst(new,old,get(car original,'finalalias)))
- >>;
- end$
- % ------------------------------------------------------------------- ;
- % PART 2 : INFORMATION MIGRATION ;
- % ------------------------------------------------------------------- ;
- symbolic procedure tchscheme;
- % ------------------------------------------------------------------- ;
- % A product(sum) -reduced to a single element- can eventually be remo-;
- % ved from the TIMES(PLUS)-part of CODMAT. If certain conditions are ;
- % fulfilled (defined by the function TransferRow) it is transferred to;
- % the Zstreet of its father PLUS(TIMES)-row and its index is removed ;
- % from the ChRow of its father. ;
- % T is returned if atleast one such a migration event takes place. ;
- % NIL is returned otherwise. ;
- % ------------------------------------------------------------------- ;
- begin scalar zz,b;
- for x:=0:rowmax do
- if not(farvar(x)=-1)
- and (zz:=zstrt x) and null(cdr zz) and transferrow(x,ival car zz)
- then <<chscheme(x,car zz); b:=t>>;
- return b;
- end;
- symbolic procedure chscheme(x,z);
- % ------------------------------------------------------------------- ;
- % The Z-element Z, the only element the Zstreet of row(X) has, has to ;
- % be transferred from the PLUS(TIMES)-part to the TIMES(PLUS)-part of ;
- % CODMAT. ;
- % ------------------------------------------------------------------- ;
- begin scalar fa,opv,cof,exp;
- setzstrt(yind z,delyzz(x,zstrt yind z));
- setzstrt(x,nil);
- if opval(x) eq 'plus
- then <<exp:=1; cof:=ival z>>
- else <<exp:=ival z; cof:=1>>;
- l1: fa:=farvar(x);
- opv:=opval(x);
- if opv eq 'plus
- then
- <<cof:=dm!-expt(cof,expcof(x));
- exp:=dm!-times(expcof(x),exp);
- chdel(fa,x);
- clearrow(x);
- if null(zstrt fa) and transferrow(fa,exp)
- then <<x:=fa; goto l1>>
- >>
- else
- << if opv eq 'times
- then
- <<cof:=dm!-times(cof,expcof(x));
- chdel(fa,x);
- clearrow(x);
- if null(zstrt fa) and transferrow(fa,cof)
- then <<x:=fa; goto l1>>
- >>
- >>;
- updfa(fa,exp,cof,z)
- end;
- symbolic procedure updfa(fa,exp,cof,z);
- % ------------------------------------------------------------------- ;
- % FA is the index of the father-row of the Z-element Z,which has to ;
- % be incorporated in the Zstreet of this row. Its exponent is Exp and ;
- % its coefficient is Cof, both computed in its calling function ;
- % ChScheme. ;
- % ------------------------------------------------------------------- ;
- if opval(fa) eq 'plus
- then setzstrt(fa,inszzzr(find!+var(farvar yind z,fa,cof),zstrt fa))
- else
- <<setzstrt(fa,inszzzr(find!*var(farvar yind z,fa,exp),zstrt fa));
- setexpcof(fa,dm!-times(cof,expcof(fa)))
- >>;
- symbolic procedure transferrow(x,iv);
- % ------------------------------------------------------------------- ;
- % IV is the Ivalue of the Z-element, oreming the Zstreet of row X. ;
- % This element can possibly be transferred. ;
- % T is returned if this element can be transferred. NIL is returned ;
- % otherwise. ;
- % ------------------------------------------------------------------- ;
- if opval(x) eq 'plus
- then transferrow1(x) and opval(farvar x) eq 'times
- else transferrow1(x) and transferrow2(x,iv);
- symbolic procedure transferrow1(x);
- % ------------------------------------------------------------------- ;
- % T is returned if row(X) defines a primitive expression (no children);
- % which is part of a larger expression, i.e. row(X) defines a child- ;
- % expression. ;
- % ------------------------------------------------------------------- ;
- null(chrow x) and numberp(farvar x);
- symbolic procedure transferrow2(x,iv);
- % ------------------------------------------------------------------- ;
- % Row(X) defines a product of the form ExpCof(X)*(a variable) ^ IV, ;
- % which is part of a sum. ;
- % X is temporarily removed from the list of its fathers children when ;
- % computing B, the return-value. ;
- % B=T if the father-row defines a sum and if either the exponent IV=1 ;
- % or if the father-Zstreet is empty (no primitive terms) and the fa- ;
- % ther itself can be transferred, i.e. if ExpCof(X)*(a variable) ^ (IV;
- % *ExpCof(Fa)) can be incorporated in the Zstreet of the grandfather- ;
- % row (,which again defines a product). ;
- % ------------------------------------------------------------------- ;
- begin scalar fa,b;
- fa:=farvar(x);
- chdel(fa,x);
- b:=opval(fa) eq 'plus and (iv=1 or (null(zstrt fa) and
- transferrow(fa,iv*expcof(fa))));
- setchrow(fa,x.chrow(fa));
- return b;
- end;
- % ------------------------------------------------------------------- ;
- % PART 3 : APPLICATION OF THE DISTRIBUTIVE LAW. ;
- % ------------------------------------------------------------------- ;
- % An expression of the form a*b + a*c + d is distributed over 3 rows ;
- % of CODMAT : One to store the sum structure, i.e. to store the pp of ;
- % the sum, being d, in a Zstrt and 2 others to store the composite ;
- % terms a*b and a*c as monomials. The indices of the latter rows are ;
- % also stored in the list Chrow, associated with the sum-row. ;
- % In addition 4 columns are introduced. One to store the 2 occurrences;
- % of a and 3 others to store the information about b,c and d. The a,b ;
- % and c column belong to the set of TIMES-columns, i.e. a,b and c are ;
- % elements of the list Varlst!* (see the module CODMAT). Similarly the;
- % d belongs to Varlst!+. If this sum is remodelled to obtain a*(b + c);
- % + d changes have to be made in the CODMAT-structure: ;
- % Now 2 sum-rows are needed and only 1 product-row. Hence the Chrow- ;
- % information of the original sum-row has to be changed and the 2 pro-;
- % duct-rows have to be removed and replaced by one new row, defining ;
- % the Zstrt for a and the Chrow to find the description of b + c back.;
- % In addition the column-information for all 4 columns has to be reset;
- % This is a simple example. In general more complicated situations can;
- % be expected. An expression like a*b + a*sin(c) + d requires 4 rows, ;
- % for instance . A CODFAC-application always follows a ExtBrsea-execu-;
- % tion. This implies that potential common factors, defined through *-;
- % col's always have an exponent-value = 1. A common factor like a^3 is;
- % always replaced by a cse (via an appl. of Expand- and Shrinkprod), ;
- % before the procedure CODFAC is applied. Hence atmost 1 exponent in a;
- % column is not equal 1. ;
- % ------------------------------------------------------------------- ;
- symbolic procedure codfac;
- % ------------------------------------------------------------------- ;
- % An application of the procedure CodFac results in an exhaustive all-;
- % level application of the distributive law on the present structure ;
- % of the set of input-expressions, as reflected by the present version;
- % of CODMAT. ;
- % If any application of the distributive law proves to be possible the;
- % value T is returned.This is an indication for the calling routine ;
- % OptimizeLoop that an additional application of ExtBrsea might be ;
- % profitable. ;
- % If such an application is not possible the value Nil is returned. ;
- % ------------------------------------------------------------------- ;
- begin scalar b,lxx;
- for y:=rowmin:(-1) do
- % ---------------------------------------------------------------- ;
- % The Zstrts of all *-columns, which are usable (because their Far-;
- % Var-field contains a Var-name), are examined by applying the pro-;
- % cedure SameFar. If this application leads to a non empty list LXX;
- % with information, needed to be able to apply the distributive law;
- % the local variable B is set T, possibly the value to be returned.;
- % B gets the initial value Nil, by declaration. ;
- % ---------------------------------------------------------------- ;
- if not (farvar(y)=-1 or farvar(y)=-2) and
- opval(y) eq 'times and (lxx:=samefar y)
- then
- <<b:=t;
- foreach el in lxx do commonfac(y,el)
- >>;
- return b
- end;
- symbolic procedure samefar(y);
- % ------------------------------------------------------------------- ;
- % Y is the index of a TIMES-column. The procedure SameFar is designed ;
- % to allow to find and return a list Flst consisting of pairs, formed ;
- % by a father-index and a sub-Zstrt of the Zstrt(Y), consisting of Z's;
- % such that Farvar(Xind Z) = Car Flst, i.e. the Xind(Z)-rows define ;
- % (composite) productterms of the same sum, which contain the variable;
- % corresponding with column Y as factor in their primitive part. ;
- % ------------------------------------------------------------------- ;
- begin scalar flst,s,far;
- foreach z in zstrt(y) do
- if numberp(far:=farvar xind z) and opval(far) eq 'plus
- then
- if s:=assoc(far,flst)
- then rplacd(s,inszzz(z,cdr(s)))
- else flst:=(far.inszzz(z,s)).flst;
- return
- foreach el in flst conc
- if cddr(el)
- then list(el)
- else nil
- end;
- symbolic procedure commonfac(y,xx);
- % ------------------------------------------------------------------- ;
- % Y is the index of a TIMES-column and XX an element of LXX, made with;
- % SameFar(Y), i.e. a pair consisting of the index Far of a father-sum ;
- % row and a sub-Zstrt,consisting of Z-elements, defining factors in ;
- % productterms of this father-sum. ;
- % These factors are defined by Z-elements (Y.exponent). Atmost one of ;
- % these exponents is greater than 1. ;
- % The purpose of CommonFac is to factor out this element,i.e. to remo-;
- % ve a Z-element (Y.1) from the Zstrts of the children and also its ;
- % corresponding occurrences from ZZ3 = Zstrt(Y), to combine the remai-;
- % ning sum-information in a new PLUS-row, with index Nsum, and to cre-;
- % ate a TIMES-row, with index Nprod, defining the product of the sum, ;
- % given by the row Nsum, and the variable corresponding with column Y.;
- % ZZ2 and CH2 are used to (re)structure information, by allowing to ;
- % combine the remaining portions of the child-rows.The father (with ;
- % index Far) is defined by a Zstrt (its primitive part) and by CH1 = ;
- % Chrow (its composite part). ZZ4 and CH4 are used to identify the ;
- % Zstrts of the children after removal of a (Y.1)-element and the ;
- % Chrow's,respectively.If exponent>1 in (Y.exponent) the Zstrt has to ;
- % be modified to obtain ZZ4, instead of a simple removal of (Y.1) from;
- % from Zstrt X. ;
- % Alternatives for the structure of the such a child-row are : ;
- % -1- A combination of a non-empty Zstrt and a non-empty list Chrow ;
- % of children. ;
- % -2- An empty Zstrt, but a non-empty Chrow. ;
- % -3- A non-empty Zstrt, but an empty Chrow. ;
- % Special attention is required when in case -3- the Zstrt consists of;
- % only 1 Z-element besides the element shared with column Y. ;
- % In case -2- similar care have to be taken when Chrow consists of 1 ;
- % row index only. ;
- % Remark : Since the overall intention is optimization, i.e. reduction;
- % of the arithmetic complexity of a set of expressions, viewed as ru- ;
- % les to perform arithmetic operations, expression parts like a*b + a ;
- % are not changed into a*(b + 1). Hence a forth alternative, being an ;
- % empty Zstrt and an empty Chrow is irrelevant. ;
- % ------------------------------------------------------------------- ;
- begin scalar far,ch1,ch2,ch4,chindex,zel,zeli,zz2,zz3,zz4,
- nsum,nprod,opv,y1,cof,x,ivalx;
- far:=car(xx);
- ch1:=chrow(far);
- zz3:=zstrt(y);
- nprod:=rowmax+1;
- nsum:=rowmax:=rowmax+2;
- % ----------------------------------------------------------------- ;
- % After some initial settings all children,accessible via the Z-el.s;
- % collected in Cdr(XX) are examined using a FOREACH_loop. ;
- % ----------------------------------------------------------------- ;
- foreach item in cdr(xx) do
- <<x:=xind item;
- if (ivalx:=ival item)=1
- then zz4:=delyzz(y,zstrt x)
- else zz4:=inszzzr(zeli:=mkzel(y,ivalx-1),delyzz(y,zstrt x));
- ch4:=chrow(x);
- cof:=expcof(x);
- % --------------------------------------------------------------- ;
- % (Y.1) is removed from the child's Zstrt, defining a monomial, ;
- % without the coefficient, stored in Cof. ;
- % --------------------------------------------------------------- ;
- if null(zz4) and (null(cdr ch4) and car(ch4))
- then
- <<% ------------------------------------------------------------- ;
- % This is the special case of possibility -2-. ZZ4 is empty and ;
- % CH4 contains only 1 index. ;
- % ------------------------------------------------------------- ;
- if (opv:=opval(ch4:=car ch4)) eq 'plus and expcof(ch4)=1
- then
- <<% ----------------------------------------------------------- ;
- % The child with row-index CH4 has the form (..+..+..)^1 = ..+;
- % ..+.. . Its definition has to be moved to the row Nsum. ;
- % The different terms can be either primitive or composite and;
- % have all to be multiplied by Cof. Both Zstrt(CH4) - the pri-;
- % mitives - and Chrow(CH4) - the composites - have to be exa- ;
- % mined. ;
- % ----------------------------------------------------------- ;
- foreach z in zstrt(ch4) do
- <<% --------------------------------------------------------- ;
- % A new Zstrt ZZ2 is made with the primitive elements of the;
- % the different Zstrt(CH4)'s. InsZZZr guarantees summation ;
- % of the Ival's if the Xind's are equal (see module CODMAT).;
- % ZZ2 is build using the FOREACH X loop. The Zstrt's of the ;
- % columns, which share an element with ZZ2,are also updated:;
- % The CH4-indexed elements are removed and the Nsum-indexed ;
- % elements are inserted. ;
- % --------------------------------------------------------- ;
- zel:=mkzel(xind z,dm!-times(ival(z),cof));
- zz2:=inszzzr(zel,zz2);
- setzstrt(yind z,inszzz(mkzel(nsum,ival zel),
- delyzz(ch4,zstrt yind z)))
- >>;
- foreach ch in chrow(ch4) do
- <<% --------------------------------------------------------- ;
- % The row CH defines a child directly if Cof = 1. In all ;
- % other cases a multiplication with Cof has to be performed.;
- % Either by changing the ExpCof field if the child is a pro-;
- % duct or by introducing a new TIMES-row. ;
- % --------------------------------------------------------- ;
- chindex:=ch;
- if not(!:onep cof)
- then
- if opval(ch) eq 'times
- then
- << setexpcof(ch,dm!-times(cof,expcof(ch)));
- setfarvar(ch,nsum)
- >>
- else
- << chindex:=rowmax:=rowmax+1;
- setrow(chindex,'times,nsum,(ch).cof,nil)
- >>
- else setfarvar(ch,nsum);
- ch2:=chindex.ch2
- >>;
- % ----------------------------------------------------------- ;
- % The row CH4 is not longer needed in CODMAT, because its ;
- % content is distributed over other rows. ;
- % ----------------------------------------------------------- ;
- clearrow(ch4);
- >>
- else
- <<% ----------------------------------------------------------- ;
- % This is still the special case -2-. (CH4) contains 1 child ;
- % index. The leading operator of this child is not PLUS. So ;
- % CH4 is simply added to the list of children indices CH2 and ;
- % the father index of row CH4 is changed into Nsum. ;
- % ----------------------------------------------------------- ;
- setfarvar(ch4,nsum);
- ch2:=ch4.ch2
- >>;
- % ------------------------------------------------------------- ;
- % The row X is not longer needed in CODMAT, because its content ;
- % is distributed over other rows. ;
- % ------------------------------------------------------------- ;
- clearrow(x)
- >>
- else
- if null(ch4) and (null(cdr zz4) and car(zz4))
- then
- <<% ----------------------------------------------------------- ;
- % This is the special case of possibility -3-: A Zstrt ZZ4 ;
- % consisting of only one Z-element. ;
- % This Z-element defines just a variable if IVal(Car ZZ4) =1. ;
- % It is a power of a variable in case IVal-value > 1 holds. ;
- % In the latter situation Nsum ought to become the new father ;
- % index of the row with index Xind Car ZZ4.In the former case ;
- % the single variable is added to the Zstrt ZZ2, before row X ;
- % can be cleared. ;
- % ----------------------------------------------------------- ;
- if not(!:onep ival(car(zz4)))
- then
- << setfarvar(x,nsum);
- setzstrt(x,zz4);
- ch2:=x.ch2
- >>
- else
- << zz2:=inszzzr(find!+var(farvar(y1:=yind car zz4),nsum,
- cof),zz2);
- setzstrt(y1,delyzz(x,zstrt y1));
- clearrow(x)
- >>
- >>
- else
- <<% ----------------------------------------------------------- ;
- % Now the general form of one of the 3 alternatives holds. ;
- % Row index X is added to the list of children indices CH2 ;
- % and the new father index for row X becomes Nsum. The Zstrt ;
- % of X is also reset. It becomes ZZ4, i.e. the previous Zstrt ;
- % after removal of (Y.1). ;
- % ----------------------------------------------------------- ;
- ch2:=x.ch2;
- setfarvar(x,nsum);
- setzstrt(x,zz4)
- >>;
- % --------------------------------------------------------------- ;
- % The previous "life" of X is skipped by removing its impact from ;
- % the "history book" CODMAT. ;
- % --------------------------------------------------------------- ;
- ch1:=delete(x,ch1);
- zz3:=delyzz(x,zz3);
- if ivalx>2 then zz3:=inszzz(mkzel(x,val(zeli)),zz3)
- >>;
- % ----------------------------------------------------------------- ;
- % Some final bookkeeping is needed : ;
- % -1- (Y.1) was deleted from the ZZ4's. Its new role, factor in the ;
- % product,defined via the row Nprod, has still to be establish- ;
- % ed by inserting this information in Y's Zstrt. ;
- % ----------------------------------------------------------------- ;
- setzstrt(y,(zel:=mkzel(nprod,1)).zz3);
- % ----------------------------------------------------------------- ;
- % -2- The list of indices of children of the row with index Far ;
- % ought to be extended with Nprod. ;
- % ----------------------------------------------------------------- ;
- setchrow(far,nprod.ch1);
- % ----------------------------------------------------------------- ;
- % -3- Finally the new rows Nprod and Nsum have to be filled. How- ;
- % ever the :=: assignment-option might cause - otherwise non- ;
- % existing - problems, because simplification is skipped before ;
- % parsing input and storing the relevant information in CODMAT. ;
- % An input expression of the form x*(a + t) + x*(a - t) can thus be ;
- % transformed - by an application of CODFAC - into the form ;
- % x*(2*a + 0). Its Zstrt can contain an element (index . 0), like ;
- % the Zstrt associated with t. The latter is due to the coefficient ;
- % addition, implied by insert-operations, like InsZZZ or InsZZZr. ;
- % Hence a test is made to discover if a Z-element Zel exists, such ;
- % that IVal(Zel)=0. If so, its occurrence is removed from both ZZ2 ;
- % and the Zstrt of the t-column. ;
- % If now Null(CH2) and Null(Cdr ZZ2) holds the PLUS-row Nsum is ;
- % superfluous. Only 2*a*x has to be stored in Nprod. The row Nsum ;
- % is removed when it is easily detectable, because this index is ;
- % not used anymore and anywhere, when the above limitations are ;
- % valid. ;
- % ----------------------------------------------------------------- ;
- foreach z in zz2 do if zeropp(ival(z))
- then << zz2:=delyzz(y1:=xind z,zz2);
- setzstrt(y1,delyzz(nsum,zstrt y1))
- >>;
- % ----------------------------------------------------------------- ;
- % Expressions like x(a-w)+x(a+w) lead to printable, but not yet to ;
- % completely satisfactory prefixlist-representations. This problem ;
- % is solved in the module CODPRI in the function ConstrExp. ;
- % ----------------------------------------------------------------- ;
- setrow(nprod,'times,far,list list nsum,list mkzel(y,val zel));
- setrow(nsum,'plus,nprod,list ch2,zz2)
- end;
- endmodule;
- end;
|