123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- module newtok; % Functions for introducing infix tokens to the system.
- % Author: Anthony C. Hearn.
- % Copyright (c) 1987 The RAND Corporation. All rights reserved.
- fluid '(!*msg !*redeflg!*);
- global '(preclis!* fixedpreclis!*);
- % Several operators in REDUCE are used in an infix form (e.g., +,- ).
- % The internal alphanumeric names associated with these operators are
- % introduced by the function NEWTOK defined below. This association,
- % and the precedence of each infix operator, is initialized in this
- % section. We also associate printing characters with each internal
- % alphanumeric name as well.
- fixedpreclis!* := '(where !*comma!* setq);
- preclis!*:= '(or and member memq equal neq eq geq greaterp leq % not
- lessp freeof plus difference times quotient expt cons);
- deflist ('(
- % (not not)
- (plus plus)
- (difference minus)
- (minus minus)
- (times times)
- (quotient recip)
- (recip recip)
- ), 'unary);
- flag ('(and or !*comma!* plus times),'nary);
- flag ('(cons setq plus times),'right);
- deflist ('((minus plus) (recip times)),'alt);
- symbolic procedure mkprec;
- begin scalar x,y,z;
- x := append(fixedpreclis!*,preclis!*);
- y := 1;
- a: if null x then return nil;
- put(car x,'infix,y);
- put(car x,'op,list list(y,y)); % for RPRINT.
- if z := get(car x,'unary) then put(z,'infix,y);
- if and(z,null flagp(z,'nary)) then put(z,'op,list(nil,y));
- x := cdr x;
- y := add1 y;
- go to a
- end;
- mkprec();
- symbolic procedure newtok u;
- begin scalar !*redeflg!*,x,y;
- if atom u or atom car u or null idp caar u
- then typerr(u,"NEWTOK argument");
- % set up SWITCH* property.
- put(caar u,'switch!*,
- cdr newtok1(car u,cadr u,get(caar u,'switch!*)));
- % set up PRTCH property.
- y := intern compress consescc car u;
- if !*redeflg!* then lprim list(y,"redefined");
- put(cadr u,'prtch,y);
- if x := get(cadr u,'unary) then put(x,'prtch,y)
- end;
- symbolic procedure newtok1(charlist,name,propy);
- if null propy then lstchr(charlist,name)
- else if null cdr charlist
- then begin
- if cdr propy and !*msg then !*redeflg!* := t;
- return list(car charlist,car propy,name)
- end
- else car charlist . newtok2(cdr charlist,name,car propy)
- . cdr propy;
- symbolic procedure newtok2(charlist,name,assoclist);
- if null assoclist then list lstchr(charlist,name)
- else if car charlist eq caar assoclist
- then newtok1(charlist,name,cdar assoclist) . cdr assoclist
- else car assoclist . newtok2(charlist,name,cdr assoclist);
- symbolic procedure consescc u;
- if null u then nil else '!! . car u . consescc cdr u;
- symbolic procedure lstchr(u,v);
- if null cdr u then list(car u,nil,v)
- else list(car u,list lstchr(cdr u,v));
- newtok '((!$) !*semicol!*);
- newtok '((!;) !*semicol!*);
- newtok '((!+) plus);
- newtok '((!-) difference);
- newtok '((!*) times);
- newtok '((!^) expt);
- newtok '((!* !*) expt);
- newtok '((!/) quotient);
- newtok '((!=) equal);
- newtok '((!,) !*comma!*);
- newtok '((!() !*lpar!*);
- newtok '((!)) !*rpar!*);
- newtok '((!:) !*colon!*);
- newtok '((!: !=) setq);
- newtok '((!.) cons);
- newtok '((!<) lessp);
- newtok '((!< !=) leq);
- newtok '((![) !*lsqbkt!*);
- newtok '((!< !<) !*lsqbkt!*);
- newtok '((!>) greaterp);
- newtok '((!> !=) geq);
- newtok '((!]) !*rsqbkt!*);
- newtok '((!> !>) !*rsqbkt!*);
- put('expt,'prtch,'!*!*); % To ensure that FORTRAN output is correct.
- flag('(difference minus plus setq),'spaced);
- flag('(newtok),'eval);
- endmodule;
- end;
|