123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- Tue Feb 10 12:26:19 2004 run on Linux
- % polydiv.tst -*- REDUCE -*-
- % Test and demonstration file for enhanced polynomial division
- % file polydiv.red.
- % F.J.Wright@Maths.QMW.ac.uk, 7 Nov 1995.
- % The example from "Computer Algebra" by Davenport, Siret & Tournier,
- % first edition, section 2.3.3.
- % First check that remainder still works as before.
- % Compute the gcd of the polynomials a and b by Euclid's algorithm:
- a := aa := x^8 + x^6 - 3x^4 - 3x^3 + 8x^2 + 2x - 5;
- 8 6 4 3 2
- a := aa := x + x - 3*x - 3*x + 8*x + 2*x - 5
- b := bb := 3x^6 + 5x^4 - 4x^2 - 9x + 21;
- 6 4 2
- b := bb := 3*x + 5*x - 4*x - 9*x + 21
- on rational;
- off allfac;
- c := remainder(a, b);
- 5 4 1 2 1
- c := - ---*x + ---*x - ---
- 9 9 3
- a := b$
- b := c$
- c := remainder(a, b);
- 117 2 441
- c := - -----*x - 9*x + -----
- 25 25
- a := b$
- b := c$
- c := remainder(a, b);
- 233150 102500
- c := --------*x - --------
- 19773 6591
- a := b$
- b := c$
- c := remainder(a, b);
- 1288744821
- c := - ------------
- 543589225
- a := b$
- b := c$
- c := remainder(a, b);
- c := 0
- off rational;
- % Repeat using pseudo-remainders, to avoid rational arithmetic:
- a := aa;
- 8 6 4 3 2
- a := x + x - 3*x - 3*x + 8*x + 2*x - 5
- b := bb;
- 6 4 2
- b := 3*x + 5*x - 4*x - 9*x + 21
- c := pseudo_remainder(a, b);
- 4 2
- c := - 15*x + 3*x - 9
- a := b$
- b := c$
- c := pseudo_remainder(a, b);
- 2
- c := 15795*x + 30375*x - 59535
- a := b$
- b := c$
- c := pseudo_remainder(a, b);
- c := 1254542875143750*x - 1654608338437500
- a := b$
- b := c$
- c := pseudo_remainder(a, b);
- c := 12593338795500743100931141992187500
- a := b$
- b := c$
- c := pseudo_remainder(a, b);
- c := 0
- % Example from Chris Herssens <herc@sulu.luc.ac.be>
- % involving algebraic numbers in the coefficient ring
- % (for which naive pseudo-division fails in REDUCE):
- factor x;
- a:=8*(15*sqrt(2)*x**3 + 18*sqrt(2)*x**2 + 10*sqrt(2)*x + 12*sqrt(2) -
- 5*x**4 - 6*x**3 - 30*x**2 - 36*x);
- 4 3 2
- a := - 40*x + x *(120*sqrt(2) - 48) + x *(144*sqrt(2) - 240)
- + x*(80*sqrt(2) - 288) + 96*sqrt(2)
- b:= - 16320*sqrt(2)*x**3 - 45801*sqrt(2)*x**2 - 50670*sqrt(2)*x -
- 26534*sqrt(2) + 15892*x**3 + 70920*x**2 + 86352*x + 24780;
- 3 2
- b := x *( - 16320*sqrt(2) + 15892) + x *( - 45801*sqrt(2) + 70920)
- + x*( - 50670*sqrt(2) + 86352) - 26534*sqrt(2) + 24780
- pseudo_remainder(a, b, x);
- 2 3/2
- x *( - 51343372800*2 + 72663731640*2 + 106394745600*sqrt(2) - 152808065280) +
- 3/2
- x*( - 77924736000*2 + 111722451600*2 + 167518488000*sqrt(2) - 236076547200)
- 3/2
- - 26395315200*2 + 21508247760*2 + 58006274400*sqrt(2) - 51393323520
- % Note: We must specify the division variable even though the
- % polynomials are apparently univariate:
- pseudo_remainder(a, b);
- *** Main division variable selected is 2**(1/2)
- 7 6 5 4 3 2
- 652800*x + 708360*x - 2656800*x - 2660160*x + 4017600*x + 3676320*x
- - 2630400*x - 2378880
- % Confirm that quotient * b + remainder = constant * a:
- pseudo_divide(a, b, x);
- {x*(652800*sqrt(2) - 635680) - 1958400*2 + 858360*sqrt(2) + 2073984,
- 2 3/2
- x *( - 51343372800*2 + 72663731640*2 + 106394745600*sqrt(2) - 152808065280)
- + x
- 3/2
- *( - 77924736000*2 + 111722451600*2 + 167518488000*sqrt(2) - 236076547200)
- 3/2
- - 26395315200*2 + 21508247760*2 + 58006274400*sqrt(2) - 51393323520}
- first ws * b + second ws;
- 4
- x *(20748595200*sqrt(2) - 31409618560)
- 3
- + x *(119127169920*sqrt(2) - 162183113472)
- 2
- + x *(237566198016*sqrt(2) - 337847596800)
- + x*(212209122560*sqrt(2) - 309143634432) + 75383084544*sqrt(2) - 99593256960
- ws / a;
- 4 3
- (x *(2593574400*sqrt(2) - 3926202320) + x *(14890896240*sqrt(2) - 20272889184)
- 2
- + x *(29695774752*sqrt(2) - 42230949600)
- + x*(26526140320*sqrt(2) - 38642954304) + 9422885568*sqrt(2) - 12449157120)/(
- 4 3 2
- - 5*x + x *(15*sqrt(2) - 6) + x *(18*sqrt(2) - 30) + x*(10*sqrt(2) - 36)
- + 12*sqrt(2))
- % is this constant?
- on rationalize;
- ws;
- - 518714880*sqrt(2) + 785240464
- % yes, it is constant
- off rationalize;
- on allfac;
- remfac x;
- procedure test_pseudo_division(a, b, x);
- begin scalar qr, L;
- qr := pseudo_divide(a, b, x);
- L := lcof(b,x);
- %% For versions of REDUCE prior to 3.6 use:
- %% L := if b freeof x then b else lcof(b,x);
- if first qr * b + second qr =
- L^(deg(a,x)-deg(b,x)+1) * a then
- write "Pseudo-division OK"
- else
- write "Pseudo-division failed"
- end;
- test_pseudo_division
- a := 5x^4 + 4x^3 + 3x^2 + 2x + 1;
- 4 3 2
- a := 5*x + 4*x + 3*x + 2*x + 1
- test_pseudo_division(a, x, x);
- Pseudo-division OK
- test_pseudo_division(a, x^3, x);
- Pseudo-division OK
- test_pseudo_division(a, x^5, x);
- Pseudo-division OK
- test_pseudo_division(a, x^3 + x, x);
- Pseudo-division OK
- test_pseudo_division(a, 0, x);
- ***** Zero divisor
- % intentional error!
- test_pseudo_division(a, 1, x);
- Pseudo-division OK
- test_pseudo_division(5x^3 + 7y^2, 2x - y, x);
- Pseudo-division OK
- test_pseudo_division(5x^3 + 7y^2, 2x - y, y);
- Pseudo-division OK
- end;
- Time for test: 10 ms
|