123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- module ncdip; % Non-commutative distributive polynomials.
- % Author: H. Melenk, ZIB Berlin, J. Apel, University of Leipzig.
- symbolic procedure ncdsetup!* u;
- % U is a list of algebraic arguments:
- % 1. list of variables,
- % 2. list of commutator relations in explicit form x*y=y*x + r
- % where ord(r) < ord(x*y) .
- % All variable pairs whitch do not occur here are considered
- % communtative.
- begin scalar x,y,w,vars,lh,z,lv,r,q;
- vars := for each x in cdr listeval(car u,nil)
- collect reval x;
- ncdipcircular!*:=nil;
- if null vdpsortmode!* then vdpsortmode!*:= 'lex;
- vdpinit2 (ncdipvars!*:=vars);
- lv:=length vars;
- ncdipbase!*:=mkvect lv;
- ncdiptable!*:=mkvect lv;
- for i:=1:lv do putv(ncdiptable!*,i,mkvect lv);
- q:=cdr listeval(cadr u,nil);
- while q do
- <<r:=car q;q:=cdr q;
- if (eqcar(r,'equal) or eqcar(r,'replaceby)) and
- eqcar(lh:=cadr r,'times) and
- null cdddr r and
- (w:=member(y:=caddr lh,vars)) and
- member(x:=cadr lh,w)
- then
- << % does any variable other than x or y appear in the rhs?
- if smember(x,q) or smember(y,q) then ncdipcircular!*:=t;
- for each v in vars do
- if v neq x and v neq y and smember(v,caddr r) then
- ncdipcircular!*:=t;
- % establish the commutator in DIP form.
- w:=ncdipndx(x,vars,1).ncdipndx(y,vars,1);
- r:=a2dip(z:=reval caddr r);
- if evcomp(dipevlmon r,dipevlmon a2dip {'times,x,y})<0 then
- typerr({'equal,{'times,x,y},z},
- "commutator under current term order");
- getv(ncdipbase!*,car w):= sort(cdr w.getv(ncdipbase!*,car w),'lessp);
- getv(getv(ncdiptable!*,car w),cdr w):= {'(1 . 1).r}>>
- else typerr(r,"commutator ")>>end;
- symbolic procedure ncdipndx(x,vars,n);
- if null vars then 0 else if x=car vars then n else ncdipndx(x,cdr vars,n #+ 1);
- %------------ noncom multiply ----------------------------
- symbolic procedure vdp!-nc!-m!*p(bc,ev,p);
- % multiply polynomial p left by monomial (bc,ev).
- begin scalar r,s;
- r:=dip2vdp dip!-nc!-m!*p(bc,ev,vdppoly p);
- if !*gsugar then
- <<s:=gsugar p; for each e in ev do s:=s+e;r:=gsetsugar(r,s)>>;
- return r end;
-
- symbolic procedure vdp!-nc!-prod(u,v);
- % non-commutative product of two distributive polynomials.
- begin scalar r;
- r:=dip2vdp dip!-nc!-prod(vdppoly u,vdppoly v);
- if !*gsugar then r:=gsetsugar(r,gsugar u + gsugar v);
- return r end;
- symbolic procedure dip!-nc!-prod(u,v);
- % We distribute first over the shorter of the two factors.
- if length u < length v then dip!-nc!-prod!-distleft(u,v)
- else dip!-nc!-prod!-distright(u,v);
- symbolic procedure dip!-nc!-prod!-distleft(u,v);
- if dipzero!? u then u else
- dipsum(dip!-nc!-m!*p!-distleft(diplbc u,dipevlmon u,v),
- dip!-nc!-prod!-distleft(dipmred u,v));
- symbolic procedure dip!-nc!-m!*p!-distleft(bc,ev,p);
- if dipzero!? p then nil else
- begin scalar lev,lbc,q;
- lev:=dipevlmon p;lbc:=diplbc p;
- p:=dip!-nc!-m!*p!-distleft(bc,ev,dipmred p);
- q:=dip!-nc!-ev!-prod(bc,ev,lbc,lev);
- return dipsum(p,q)end;
- symbolic procedure dip!-nc!-prod!-distright(u,v);
- if dipzero!? v then v else
- dipsum(dip!-nc!-m!*p!-distright(u,diplbc v,dipevlmon v),
- dip!-nc!-prod!-distright(u,dipmred v));
- symbolic procedure dip!-nc!-m!*p!-distright(p,bc,ev);
- if dipzero!? p then nil else
- begin scalar lev,lbc,q;
- lev:=dipevlmon p;lbc:=diplbc p;
- p:=dip!-nc!-m!*p!-distright(dipmred p,bc,ev);
- q:=dip!-nc!-ev!-prod(lbc,lev,bc,ev);
- return dipsum(p,q)end;
- symbolic procedure dip!-nc!-ev!-prod(bc1,ev1,bc2,ev2);
- % compute (bc1*ev1) * (bc2*ev2). Result is a dip.
- dip!-nc!-ev!-prod1(ev1,1,dipfmon(bcprod(bc1,bc2),ev2));
- symbolic procedure dip!-nc!-ev!-prod1(ev,n,r);
- % loop over ev and n (counter). NOTE: ev must be processed from right to left!
- if null ev then r else
- dip!-nc!-ev!-prod2(car ev,n,dip!-nc!-ev!-prod1(cdr ev,n#+1,r));
- symbolic procedure dip!-nc!-ev!-prod2(j,n,r);
- % muliply x_n^j * r
- if j=0 or dipzero!? r then r else
- begin scalar ev,bc,r0,w,s,evl,evr;integer i;
- ev:=dipevlmon r;bc:=diplbc r;
- r:=dip!-nc!-ev!-prod2(j,n,dipmred r);
- % collect the variables in ev which do not commute with x_n;
- w:=getv(ncdipbase!*,n);
- while w and nth(ev,car w)=0 do w:=cdr w;
- % no commutator?
- if null w then
- <<r0:=dipfmon(bc,dipevadd1var(j,n,ev));return dipsum(r0,r)>>;
- % We handle now the leftmost commutator and
- % push the rest of the problem down to the recursion:
- % split the monmial into parts left and
- % right of the noncom variable and multiply these.
- w:=car w;s:=nth(ev,w);
- % Split the ev into left and right part.
- i:=0;for each e in ev do <<i:=i#+1;if i<w then<<evl:=e.evl;evr:=0 .evr>>
- else if i=w then <<evl:=0 .evl;evr:=0 .evr>>
- else <<evl:=0 .evl;evr:=e .evr>> >>;
- evl:=reversip evl;evr:=reversip evr;
- r0:=dip!-nc!-get!-commutator(n,j,w,s);
- % multiply by left exponent
- r0:=if ncdipcircular!* then
- <<r0:=dip!-nc!-prod(dipfmon(a2bc 1,evl),r0);
- r0:=dip!-nc!-prod(r0,dipfmon(bc,evr))>> else
- <<r0:=dipprod(dipfmon(a2bc 1,evl),r0);
- r0:=dipprod(r0,dipfmon(bc,evr))>>;
- done:return dipsum(r0,r)end;
- symbolic procedure dip!-nc!-get!-commutator(n1,e1,n2,e2);
- % Compute the commutator for y^e1*x^e2 where y is
- % the n1-th variable and x is the n2-th variable.
- % The commutators for power products are computed
- % recursively when needed. They are stored in a data base.
- % I assume here that the commutator for (1,1) has been
- % put into the data base before. We update the table
- % in place by nconc-ing new pairs to its end.
- begin scalar w,r,p;
- w:=getv(getv(ncdiptable!*,n1),n2);p:=e1.e2;
- if (r:=assoc(p,w)) then return cdr r;
- % compute new commutator recursively:
- % first e1 downwards, then e2
- r:=if e1>1 then
- % compute y^e1*x^e2 as y*(y^(e1-1)*x^e2)
- dip!-nc!-ev!-prod2(1,n1,dip!-nc!-get!-commutator(n1,e1#-1,n2,e2))
- else
- % compute y*x^e2 as (y*x^(e2-1))*x
- dip!-nc!-prod(dip!-nc!-get!-commutator(n1,1,n2,e2#-1),dipfvarindex n2);
- nconc(w,{(p.r)});
- return r end;
- symbolic procedure dipfvarindex n;
- % Make a dip from a single variable index.
- a2dip nth(dipvars!*,n);
- symbolic procedure dipevadd1var(e,n,ev);
- % add e into the nth position of ev.
- if null ev or n<1 then ev else
- if n=1 then (car ev #+ e).cdr ev else car ev.dipevadd1var(e,n#-1,cdr ev);
- % ------------ conversion algebraic => nc dip --------------
- symbolic procedure a2ncdip a;
- if atom a then a2dip a else
- if car a = 'difference then
- a2ncdip{'plus,cadr a,{'times,-1,caddr a}} else
- if car a = 'minus then
- a2ncdip{'times,-1,cadr a} else
- if car a='expt and fixp caddr a then
- a2ncdip('times.for i:=1:caddr a collect cadr a) else
- if car a='plus then
- begin scalar r;
- r:=a2ncdip cadr a;
- for each w in cddr a do r:=dipsum(r,a2ncdip w);
- return r end else
- if car a='times then
- begin scalar r;
- r:=a2ncdip cadr a;
- for each w in cddr a do r:=dip!-nc!-prod(r,a2ncdip w);
- return r end else
- if car a='!*sq then a2ncdip prepsq cadr a else a2dip a;
- symbolic procedure a2ncvdp a;dip2vdp a2ncdip a;
- endmodule;;end;
|