123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- module liendmc1; % N-dimensional Lie algebras with 1-dimensional derived
- % algebra.
- % Author: Carsten Schoebel.
- % e-mail: cschoeb@aix550.informatik.uni-leipzig.de .
- % Copyright (c) 1993 The Leipzig University, Computer Science Dept.
- % All Rights Reserved.
- algebraic;
- operator heisenberg,commutative,lie_algebra;
- algebraic procedure liendimcom1(n);
- begin
- if (not(symbolic fixp(n)) or n<2) then
- symbolic rederr "dimension out of range";
- symbolic (if gettype 'lienstrucin neq 'ARRAY then
- rederr "lienstrucin not ARRAY");
- if length lienstrucin neq {n+1,n+1,n+1} then
- symbolic rederr "dimension of lienstrucin out of range";
- matrix lientrans(n,n);
- array lie_cc(n,n,n);
- lieninstruc(n);
- lienjactest(n);if lie_jtest neq 0 then
- <<clear lie_cc,lie_jtest;symbolic rederr "not a Lie algebra">>;
- <<liendimcom(n);
- if lie_dim=0 then
- <<if symbolic !*tr_lie then
- write "The given Lie algebra is commutative";
- lientrans:=lientrans**0;lie_list:={commutative(n)}>> else
- if lie_dim=1 then <<if lie_help=0 then
- liencentincom(n,lie_tt,lie_p,lie_q)
- else liencentoutcom(n,lie_tt,lie_s);
- if symbolic !*tr_lie then
- lienoutform(lientrans,n,lie_help,2*lie_kk!*+1);
- if lie_help=1 then lie_list:={lie_algebra(2),commutative(n-2)} else
- lie_list:={heisenberg(2*lie_kk!*+1),commutative(n-2*lie_kk!*-1)}
- >>else
- <<clear lie_dim,lie_help,lie_p,lie_q,lie_tt,lie_s,lie_kk!*,
- lie_jtest,lie_cc;
- symbolic rederr "dimension of derived algebra out of range">>;
- clear lie_dim,lie_help,lie_p,lie_q,lie_tt,lie_s,lie_kk!*,lie_control>>;
- clear lie_jtest,lie_cc;return lie_list
- end;
- algebraic procedure lieninstruc(n);
- begin
- for i:=1:n-1 do for j:=i+1:n do for k:=1:n do
- <<lie_cc(i,j,k):=lienstrucin(i,j,k);
- lie_cc(j,i,k):=-lienstrucin(i,j,k)>>
- end;
- algebraic procedure lienjactest(n);
- begin
- lie_jtest:=0;
- for i:=1:n-2 do
- for j:=i+1:n-1 do
- for k:=j+1:n do
- for l:=1:n do
- if (for r:=1:n sum
- lie_cc(j,k,r)*lie_cc(i,r,l)+lie_cc(i,j,r)*lie_cc(k,r,l)+
- lie_cc(k,i,r)*lie_cc(j,r,l)) neq 0 then <<lie_jtest:=1;
- i:=n-1;j:=n;k:=n+1;l:=n+1>>
- end;
- algebraic procedure liendimcom(n);
- begin integer r;
- scalar he;
- lie_dim:=0;
- for i:=1:n-1 do
- for j:=i:n do
- for k:=1:n do
- if lie_cc(i,j,k) neq 0 then
- <<lie_dim:=1;lie_p:=i;lie_q:=j;r:=k;i:=n;j:=k:=n+1>>;
- if lie_dim neq 0 then
- <<for i:=1:n-1 do
- for j:=1:n do
- <<he:=lie_cc(i,j,r)/lie_cc(lie_p,lie_q,r);
- for k:=1:n do
- if lie_cc(i,j,k) neq (he*lie_cc(lie_p,lie_q,k)) then
- <<lie_dim:=2;i:=n;j:=n+1;k:=n+1>>>>;
- if lie_dim=1 then
- <<lie_help:=0;
- for i:=1:n do
- for j:=1:n do
- if (for k:=1:n sum (lie_cc(lie_p,lie_q,k)*lie_cc(k,i,j))) neq 0
- then
- <<lie_help:=1;lie_s:=i;r:=j;i:=j:=n+1>>;
- for i:=1:n do lientrans(1,i):=lie_cc(lie_p,lie_q,i);
- if lie_help=0 then
- <<lientrans(2,lie_p):=lientrans(3,lie_q):=1;lie_kk!*:=1;
- for i:=1:n do <<if
- (lie_cc(lie_p,lie_q,i) neq 0 and i neq lie_p and i neq lie_q)
- then
- <<lie_tt:=i;i:=n+1>>>>>> else
- <<lientrans(2,lie_s):=
- lie_cc(lie_p,lie_q,r)/(for k:=1:n sum
- (lie_cc(lie_p,lie_q,k)*lie_cc(k,lie_s,r)));
- for i:=1:n do <<if (lie_cc(lie_p,lie_q,i) neq 0 and i neq lie_s)
- then
- <<lie_tt:=i;i:=n+1>>>>>>>>>>;
- end;
- algebraic procedure liencentincom(n,tt,p,q);
- begin integer con1,con2;
- matrix lie_lamb(n,n);
- lie_control:=0;
- con1:=con2:=0;
- for i:=4:n do
- if (i neq tt and i neq p and i neq q) then
- lientrans(i,i):=1 else
- if (tt neq 1 and p neq 1 and q neq 1 and con1 neq 1) then
- <<lientrans(i,1):=1;con1:=1>> else
- if (tt neq 2 and p neq 2 and q neq 2 and con2 neq 1) then
- <<lientrans(i,2):=1;con2:=1>> else lientrans(i,3):=1;
- if n>3 then <<liennewstruc(n,2,tt);
- if n>4 then
- for i:=4 step 2 until n do if (i+1)=n then <<lienfindpair(n,i);
- if lie_control=1 then lie_kk!*:=lie_kk!*+1>> else
- if i+1<n then <<lienfindpair(n,i);if lie_control=1 then
- <<liennewstruc(n,i,tt),lie_kk!*:=lie_kk!*+1>>else
- i:=n+1>>>>
- end;
- algebraic procedure lienfindpair(n,m);
- begin scalar he;
- matrix lie_a(n,n);
- lie_control:=0;
- for i:=m:n-1 do
- for j:=i+1:n do
- <<if lie_lamb(i,j) neq 0 then
- <<lie_control:=1;
- lie_a(i,m):=lie_a(m+1,j):=lie_a(j,m+1):=1;
- lie_a(m,i):=1/lie_lamb(i,j);
- for k:=1:n do
- if (k neq i and k neq j and k neq m and k neq (m+1)) then
- lie_a(k,k):=1;
- lientrans:=lie_a*lientrans;i:=n;j:=n+1>>>>;clear lie_a
- end;
- algebraic procedure liennewstruc(n,m,tt);
- begin matrix lie_a(n,n);
- lie_a:=lie_a**0;
- for i:=m:n-1 do
- for j:=i+1:n do
- lie_lamb(i,j):=(for k:=1:n sum for l:=1:n sum
- lientrans(i,k)*lientrans(j,l)*lie_cc(k,l,tt))/lientrans(1,tt);
- for i:=m+2:n do
- <<lie_a(i,m+1):=-lie_lamb(m,i);lie_a(i,m):=lie_lamb(m+1,i)>>;
- lientrans:=lie_a*lientrans;
- for i:=m+2:n-1 do
- for j:=i+1:n do
- lie_lamb(i,j):=(for k:=1:n sum for l:=1:n sum
- lientrans(i,k)*lientrans(j,l)*lie_cc(k,l,tt))/lientrans(1,tt);
- clear lie_a
- end;
- algebraic procedure liencentoutcom(n,tt,s);
- begin integer pp,qq;
- matrix lie_lamb(2,n),lie_a(n,n);
- for i:=3:n do
- <<lientrans(i,i):=1;lie_lamb(1,i):=(for j:=1:n sum
- lientrans(1,j)*lie_cc(j,i,tt))/lientrans(1,tt);
- lie_lamb(2,i):=lie_cc(s,i,tt)*lientrans(2,s)/lientrans(1,tt)>>;
- if (tt>2 and s>2) then
- <<lientrans(tt,tt):=lientrans(s,s):=0;
- lientrans(tt,1):=lientrans(s,2):=1;
- lie_lamb(1,tt):=(for j:=1:n sum
- lientrans(1,j)*lie_cc(j,1,tt)/lientrans(1,tt));
- lie_lamb(1,s):=(for j:=1:n sum
- lientrans(1,j)*lie_cc(j,2,tt)/lientrans(1,tt));
- lie_lamb(2,tt):=lie_cc(s,1,tt)*lientrans(2,s)/lientrans(1,tt);
- lie_lamb(2,s):=lie_cc(s,2,tt)*lientrans(2,s)/lientrans(1,tt)
- >> else if (tt>2 or s>2) then
- <<if tt>2 then <<pp:=3-s;qq:=tt>> else <<pp:=3-tt;qq:=s>>;
- lientrans(qq,qq):=0;lientrans(qq,pp):=1;
- lie_lamb(1,qq):=(for j:=1:n sum
- lientrans(1,j)*lie_cc(j,pp,tt))/lientrans(1,tt);
- lie_lamb(2,qq):=lie_cc(s,pp,tt)*lientrans(2,s)/lientrans(1,tt)>>;
- lie_a:=lie_a**0;
- for i:=3:n do
- <<lie_a(i,2):=-lie_lamb(1,i);lie_a(i,1):=lie_lamb(2,i)>>;
- lientrans:=lie_a*lientrans;clear lie_lamb,lie_a
- end;
- algebraic procedure lienoutform(at,n,lhelp,kk);
- begin operator y;
- lie_a:=at;
- if lhelp=1 then
- <<write
- "Your Lie algebra is the direct sum of the Lie algebra L(2) and";
- write "the ",n-2,"-dimensional commutative Lie algebra, where L(2) is";
- write
- "2-dimensional and there exists a basis {X(1),X(2)} in L(2) with";
- write "[X(1),X(2)]=X(1).">>else
- <<write
- "Your Lie algebra is the direct sum of the Lie algebra H(",kk,")";
- write "and the ",n-kk,"-dimensional commutative Lie algebra, where";
- write "H(",kk,") is ",kk,"-dimensional and there exists a basis";
- write "{X(1),...,X(",kk,")} in H(",kk,") with:";
- write "[X(2),X(3)]=[X(2*i),X(2*i+1)]=...=[X(",kk-1,"),X(",kk,")]=X(1)"
- >>;
- write "The transformation into this form is:";
- for i:=1:n do write "X(",i,"):=",for j:=1:n sum
- lie_a(i,j)*y(j);clear y,lie_a
- end;
- endmodule;
- end;
|