lie.rlg 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258
  1. Tue Feb 10 12:26:51 2004 run on Linux
  2. % test file for the Lie package
  3. % 1. n-dimensional Lie algebras with dimL1=1
  4. % n=6
  5. array lienstrucin(6,6,6)$
  6. lienstrucin(1,2,2):=lienstrucin(1,2,6):=lienstrucin(1,5,2):=-1$
  7. lienstrucin(1,5,6):=lienstrucin(2,5,3):=lienstrucin(2,5,5):=-1$
  8. lienstrucin(1,2,3):=lienstrucin(1,2,5):=lienstrucin(1,5,3):=1$
  9. lienstrucin(1,5,5):=lienstrucin(2,5,2):=lienstrucin(2,5,6):=1$
  10. liendimcom1(6);
  11. {lie_algebra(2),commutative(4)}
  12. % transformation matrix
  13. lientrans;
  14. [0 -1 1 0 1 -1]
  15. [ ]
  16. [0 1 0 0 0 0 ]
  17. [ ]
  18. [1 1 -1 0 -1 1 ]
  19. [ ]
  20. [0 0 0 1 0 0 ]
  21. [ ]
  22. [0 0 -1 0 0 1 ]
  23. [ ]
  24. [0 0 0 0 0 1 ]
  25. clear lienstrucin$
  26. % n=8
  27. array lienstrucin(8,8,8)$
  28. lienstrucin(1,2,2):=lienstrucin(1,5,2):=lienstrucin(2,4,3):=1$
  29. lienstrucin(2,4,5):=lienstrucin(4,5,2):=1$
  30. lienstrucin(1,2,3):=lienstrucin(1,2,5):=lienstrucin(1,5,3):=-1$
  31. lienstrucin(1,5,5):=lienstrucin(2,4,2):=lienstrucin(4,5,3):=-1$
  32. lienstrucin(4,5,5):=-1$
  33. lienstrucin(1,2,6):=lienstrucin(1,5,6):=lienstrucin(4,5,6):=5$
  34. lienstrucin(2,4,6):=-5$
  35. liendimcom1(8);
  36. {heisenberg(3),commutative(5)}
  37. % same with verbose output
  38. on tr_lie$
  39. liendimcom1(8);
  40. Your Lie algebra is the direct sum of the Lie algebra H(3)
  41. and the 5-dimensional commutative Lie algebra, where
  42. H(3) is 3-dimensional and there exists a basis
  43. {X(1),...,X(3)} in H(3) with:
  44. [X(2),X(3)]=[X(2*i),X(2*i+1)]=...=[X(2),X(3)]=X(1)
  45. The transformation into this form is:
  46. X(1):=5*y(6) - y(5) - y(3) + y(2)
  47. X(2):=y(1)
  48. X(3):=y(2)
  49. X(4):=y(4) - y(1)
  50. X(5):=y(5) - y(2)
  51. X(6):=y(6)
  52. X(7):=y(7)
  53. X(8):=y(8)
  54. {heisenberg(3),commutative(5)}
  55. clear lienstrucin$
  56. off tr_lie$
  57. % 2. 4-dimensional Lie algebras
  58. % Korteweg-de Vries Equation: u_t+u_{xxx}+uu_x=0
  59. % symmetry algebra spanned by four vector fields:
  60. % v_1=d_x, v_2=d_t, v_3=td_x+d_u, v_4=xd_x+3td_t-2ud_u
  61. array liestrin(4,4,4)$
  62. liestrin(1,4,1):=liestrin(2,3,1):=1$
  63. liestrin(2,4,2):=3$
  64. liestrin(3,4,3):=-2$
  65. lieclass(4);
  66. {liealg(4),comtab(16),5}
  67. clear liestrin$
  68. % dimL1=3, dimL2=3
  69. array liestrin(4,4,4)$
  70. liestrin(1,2,1):=-6$
  71. liestrin(1,2,3):=-2$
  72. liestrin(1,2,4):=6$
  73. liestrin(1,3,1):=-1$
  74. liestrin(1,3,2):=1$
  75. liestrin(1,3,4):=1$
  76. liestrin(2,3,1):=-3$
  77. liestrin(2,3,4):=2$
  78. liestrin(2,4,1):=6$
  79. liestrin(2,4,3):=2$
  80. liestrin(2,4,4):=-6$
  81. liestrin(3,4,1):=1$
  82. liestrin(3,4,2):=-1$
  83. liestrin(3,4,4):=-1$
  84. lieclass(4);
  85. {liealg(4),comtab(21)}
  86. % same with verbose output
  87. on tr_lie$
  88. lieclass(4);
  89. [W,X]=Y, [W,Y]=-X, [X,Y]=W
  90. {liealg(4),comtab(21)}
  91. % transformation matrix
  92. liemat;
  93. [ 3 0 1 -3 ]
  94. [ ]
  95. [ - 3 2 ]
  96. [--------- 0 0 ---------]
  97. [ sqrt(2) sqrt(2) ]
  98. [ ]
  99. [ - 1 1 1 ]
  100. [--------- --------- 0 ---------]
  101. [ sqrt(2) sqrt(2) sqrt(2) ]
  102. [ ]
  103. [ -2 0 0 2 ]
  104. clear liestrin$
  105. off tr_lie$
  106. end$
  107. Time for test: 280 ms