123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- module groebcri;
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- %
- % Criteria for the Buchberger algorithm .
- %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- smacro procedure atleast2elementsin u;
- % Test if u has at least a cadr element .
- u and cdr u;
- symbolic procedure groebbuchcrit4(p1,p2,e);
- % Buchberger criterion 4 . p1 and p2 are distributive
- % polynomials . e is the least common multiple of
- % the leading exponent vectors of the distributive
- % polynomials p1 and p2 . groebBuchcrit4(p1,p2,e)returns a
- % boolean expression . True,if the reduction of the
- % distributive polynomials p1 and p2 is necessary else false .
- % Orig:
- % e neq vevsum(vdpevlmon p1,vdpevlmon p2);
- << e;groebbuchcrit4t(vdpevlmon p1,vdpevlmon p2)>>;
- symbolic procedure groebbuchcrit4t(e1,e2);
- % Nonconstructive test of lcm(e1,e2)=e1 + e2;
- % equivalent: no matches of nonzero elements .
- if null e1 or null e2 then nil else
- if(car e1 neq 0)and(car e2 neq 0)then t
- else groebbuchcrit4t(cdr e1,cdr e2);
- symbolic procedure groebinvokecritbuch4(p,d2);
- % Buchberger's criterion 4 is tested on the pair p and the list
- % D2 of critical pairs is updated with respect to that crit .
- % Result is the updated D2 .
- begin scalar p1,p2,vev1,vev2,f1,f2,fd,b4;
- p1:=cadr p;p2:=caddr p;vev1:=vdpevlmon p1;vev2:=vdpevlmon p2;
- f1:=vdpgetprop(p1,'monfac);f2:=vdpgetprop(p2,'monfac);
- % Discard known common factors first .
- if f1 and f2 then
- << fd:=vevmin(f1,f2);
- b4:=groebbuchcrit4t(vevdif(vev1,fd), vevdif(vev2,fd));
- if b4 and % Is the body itself a common factor ?
- vevdif(vev1,f1)=vevdif(vev2,f2)
- % Test if the polys reduced by their monom .
- % factor are equal .
- and groebbuchcrit4compatible(p1,f1,p2,f2)
- then b4:=nil >>
- else b4:=groebbuchcrit4t(vev1,vev2);
- if b4 then d2:=append(d2,{p})else b4count!*:=b4count!* + 1;
- return d2 end;
- symbolic procedure groebbuchcrit4compatible(p1,f1,p2,f2);
- % p1,p2 polys,f1,f2 exponent vectors(monomials), which are known to
- % be factors of their f;
- % tests, if p1 / f1=p2 / f2 .
- if vdpzero!? p1 then vdpzero!? p2
- else if vdplbc p1=vdplbc p2 and
- groebbuchcrit4compatiblevev(vdpevlmon p1,f1,vdpevlmon p2,f2)
- then groebbuchcrit4compatible(vdpred p1,f1,vdpred p2,f2)
- else nil;
- symbolic procedure groebbuchcrit4compatiblevev(vev1,f1,vev2,f2);
- if null vev1 then null vev2 else
- if(if f1 then car vev1 - car f1 else car vev1)=
- (if f2 then car vev2 - car f2 else car vev2)then
- groebbuchcrit4compatiblevev(cdr vev1,
- if f1 then cdr f1 else nil,cdr vev2,
- if f2 then cdr f2 else nil)else nil;
- symbolic procedure groebinvokecritf d1;
- % GroebInvokeCritF tests a list D1 of critical pairs . It cancels all
- % critical pairs but one in D1 having the same lcm(i . e . car
- % component)as car(D1). This only one is chosen,if possible,
- % such that it doesn't satisfy groebBuchcrit4 .
- % Version: moeller upgraded 5.7.87 .
- begin scalar tp1,p2,active;
- tp1:=caar d1;active:=atleast2elementsin d1;
- while active do
- << p2:=cadr d1;
- if car p2=tp1 then
- << fcount!*:=fcount!* + 1;
- if not groebbuchcrit4t(cadr p2,caddr p2)then d1:=cdr d1
- else d1:=groedeletip(p2,d1);
- active:=atleast2elementsin d1 >>
- else active:=nil >>;
- return d1 end;
- symbolic procedure groebinvokecritm(p1,d1);
- % D1 is a list of critical pairs,p1 is a critical pair .
- % Crit M tests,if the lcm of p1 divides one of the lcm's in D1 .
- % If so,this object is eliminated .
- % Result is the updated D1 .
- << for each p3 in d1 do if buchvevdivides!?(car p1,car p3)then
- << mcount!*:=mcount!* + 1;
- d1:=groedeletip(p3,d1)>>; % Criterion M .
- d1 >>;
- symbolic procedure groebinvokecritb(fj,d);
- % D is a list of critical pairs,fj is a polynomial .
- % Crit B allows to eliminate a pair from D,if the leading monomial
- % of fj divides the lcm of the pair,but the lcm of fj with each of
- % the members of the pair is not the lcm of the pair itself .
- % Result is the updated D .
- << for each p in d do
- if buchvevdivides!?(vdpevlmon fj,car p)and
- tt(fj,cadr p)neq car p and % Criterion B .
- tt(fj,caddr p)neq car p then
- << bcount!*:=bcount!* +1;d:=delete(p,d)>>;d >>;
- endmodule;;end;
|