12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- module idexf;
- % Author: Eberhard Schruefer
- global '(exfideal!*);
- symbolic procedure exterior!-ideal u;
- begin scalar x,y;
- rmsubs();
- for each j in u do
- if indexvp j then
- for each k in mkaindxc(y := flatindxl cdr j,nil) do
- x := partitsq(simpindexvar(car j . subla(pair(y,k),cdr j)),
- 'wedgefp) . x
- else x := partitsq(simp!* j,'wedgefp) . x;
- exfideal!* := append(x,exfideal!*);
- end;
- rlistat '(exterior!-ideal);
- symbolic procedure remexf(u,v);
- begin scalar lu,lv,x,y,z;
- lv := ldpf v;
- a: if null u or domainp(lu := ldpf u) then
- return u;
- if x := divexf(lu,lv) then
- <<y := partitsq(simp list('wedge,prepf v,x),'wedgefp);
- z := negsq quotsq(lc u,lc y);
- u := addpsf(u,multpsf(1 .* z .+ nil,y))>>
- else return u;
- go to a
- end;
- symbolic procedure divexf(u,v);
- begin scalar x,y;
- x := prepf u;
- y := prepf v;
- if atom x then x := list x
- else if car x eq 'wedge then x := cdr x;
- if atom y then y := list y
- else if car y eq 'wedge then y := cdr y;
- a: if null y then return 'wedge . x;
- if null(x := delform(car y,x)) then return nil;
- y := cdr y;
- go to a
- end;
- symbolic procedure delform(u,v);
- delform1(u,v,nil);
- symbolic procedure delform1(u,v,w);
- if null v then nil
- else if u = car v then if w or cdr v
- then append(reverse w,cdr v)
- else list 1
- else delform1(u,cdr v,car v . w);
- symbolic procedure exf!-mod!-ideal u;
- begin
- for each j in exfideal!* do u := remexf(u,j);
- return u
- end;
- endmodule;
- end;
|