123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484 |
- % Problem: Calculate the PDE's for the isovector of the heat equation.
- % --------
- % (c.f. B.K. Harrison, f.B. Estabrook, "Geometric Approach...",
- % J. Math. Phys. 12, 653, 1971)
- % The heat equation @ psi = @ psi is equivalent to the set of exterior
- % xx t
- % equations (with u=@ psi, y=@ psi):
- % T x
- pform {psi,u,x,y,t}=0,a=1,{da,b}=2;
- a := d psi - u*d t - y*d x;
- da := - d u^d t - d y^d x;
- b := u*d x^d t - d y^d t;
- % Now calculate the PDE's for the isovector.
- tvector v;
- pform {vpsi,vt,vu,vx,vy}=0;
- fdomain vpsi=vpsi(psi,t,u,x,y),vt=vt(psi,t,u,x,y),vu=vu(psi,t,u,x,y),
- vx=vx(psi,t,u,x,y),vy=vy(psi,t,u,x,y);
- v := vpsi*@ psi + vt*@ t + vu*@ u + vx*@ x + vy*@ y;
- factor d;
- on rat;
- i1 := v |_ a - l*a;
- pform o=1;
- o := ot*d t + ox*d x + ou*d u + oy*d y;
- fdomain f=f(psi,t,u,x,y);
- i11 := v _| d a - l*a + d f;
- let vx=-@(f,y),vt=-@(f,u),vu=@(f,t)+u*@(f,psi),vy=@(f,x)+y*@(f,psi),
- vpsi=f-u*@(f,u)-y*@(f,y);
- factor ^;
- i2 := v |_ b - xi*b - o^a + zeta*da;
- let ou=0,oy=@(f,u,psi),ox=-u*@(f,u,psi),
- ot=@(f,x,psi)+u*@(f,y,psi)+y*@(f,psi,psi);
- i2;
- let zeta=-@(f,u,x)-@(f,u,y)*u-@(f,u,psi)*y;
- i2;
- let xi=-@(f,t,u)-u*@(f,u,psi)+@(f,x,y)+u*@(f,y,y)+y*@(f,y,psi)+@(f,psi);
- i2;
- let @(f,u,u)=0;
- i2; % These PDE's have to be solved.
- clear a,da,b,v,i1,i11,o,i2,xi,t;
- remfdomain f,vpsi,vt,vu,vx,vy;
- clear @(f,u,u);
- % Problem:
- % --------
- % Calculate the integrability conditions for the system of PDE's:
- % (c.f. B.F. Schutz, "Geometrical Methods of Mathematical Physics"
- % Cambridge University Press, 1984, p. 156)
- % @ z /@ x + a1*z + b1*z = c1
- % 1 1 2
- % @ z /@ y + a2*z + b2*z = c2
- % 1 1 2
- % @ z /@ x + f1*z + g1*z = h1
- % 2 1 2
- % @ z /@ y + f2*z + g2*z = h2
- % 2 1 2 ;
- pform w(k)=1,integ(k)=4,{z(k),x,y}=0,{a,b,c,f,g,h}=1,
- {a1,a2,b1,b2,c1,c2,f1,f2,g1,g2,h1,h2}=0;
- fdomain a1=a1(x,y),a2=a2(x,y),b1=b1(x,y),b2=b2(x,y),
- c1=c1(x,y),c2=c2(x,y),f1=f1(x,y),f2=f2(x,y),
- g1=g1(x,y),g2=g2(x,y),h1=h1(x,y),h2=h2(x,y);
- a:=a1*d x+a2*d y$
- b:=b1*d x+b2*d y$
- c:=c1*d x+c2*d y$
- f:=f1*d x+f2*d y$
- g:=g1*d x+g2*d y$
- h:=h1*d x+h2*d y$
- % The equivalent exterior system:
- factor d;
- w(1) := d z(-1) + z(-1)*a + z(-2)*b - c;
- w(2) := d z(-2) + z(-1)*f + z(-2)*g - h;
- indexrange 1,2;
- factor z;
- % The integrability conditions:
- integ(k) := d w(k) ^ w(1) ^ w(2);
- clear a,b,c,f,g,h,x,y,w(k),integ(k),z(k);
- remfdomain a1,a2,b1,c1,c2,f1,f2,g1,g2,h1,h2;
- % Problem:
- % --------
- % Calculate the PDE's for the generators of the d-theta symmetries of
- % the Lagrangian system of the planar Kepler problem.
- % c.f. W.Sarlet, F.Cantrijn, Siam Review 23, 467, 1981
- % Verify that time translation is a d-theta symmetry and calculate the
- % corresponding integral.
- pform {t,q(k),v(k),lam(k),tau,xi(k),eta(k)}=0,theta=1,f=0,
- {l,glq(k),glv(k),glt}=0;
- tvector gam,y;
- indexrange 1,2;
- fdomain tau=tau(t,q(k),v(k)),xi=xi(t,q(k),v(k)),f=f(t,q(k),v(k));
- l := 1/2*(v(1)**2 + v(2)**2) + m/r$ % The Lagrangian.
- pform r=0;
- fdomain r=r(q(k));
- let @(r,q 1)=q(1)/r,@(r,q 2)=q(2)/r,q(1)**2+q(2)**2=r**2;
- lam(k) := -m*q(k)/r; % The force.
- gam := @ t + v(k)*@(q(k)) + lam(k)*@(v(k))$
- eta(k) := gam _| d xi(k) - v(k)*gam _| d tau$
- y := tau*@ t + xi(k)*@(q(k)) + eta(k)*@(v(k))$ % Symmetry generator.
- theta := l*d t + @(l,v(k))*(d q(k) - v(k)*d t)$
- factor @;
- s := y |_ theta - d f$
- glq(k) := @(q k) _| s;
- glv(k) := @(v k) _| s;
- glt := @(t) _| s;
- % Translation in time must generate a symmetry.
- xi(k) := 0;
- tau := 1;
- glq k := glq k;
- glv k := glv k;
- glt;
- % The corresponding integral is of course the energy.
- integ := - y _| theta;
- clear l,lam k,gam,eta k,y,theta,s,glq k,glv k,glt,t,q k,v k,tau,xi k;
- remfdomain r,f,tau,xi;
- % Problem:
- % --------
- % Calculate the "gradient" and "Laplacian" of a function and the "curl"
- % and "divergence" of a one-form in elliptic coordinates.
- coframe e u = sqrt(cosh(v)**2 - sin(u)**2)*d u,
- e v = sqrt(cosh(v)**2 - sin(u)**2)*d v,
- e phi = cos u*sinh v*d phi;
- pform f=0;
- fdomain f=f(u,v,phi);
- factor e,^;
- on rat,gcd;
- order cosh v, sin u;
- % The gradient:
- d f;
- factor @;
- % The Laplacian:
- # d # d f;
- % Another way of calculating the Laplacian:
- -#vardf(1/2*d f^#d f,f);
- remfac @;
- % Now calculate the "curl" and the "divergence" of a one-form.
- pform w=1,a(k)=0;
- fdomain a=a(u,v,phi);
- w := a(-k)*e k;
- % The curl:
- x := # d w;
- factor @;
- % The divergence:
- y := # d # w;
- remfac @;
- clear x,y,w,u,v,phi,e k,a k;
- remfdomain a,f;
- % Problem:
- % --------
- % Calculate in a spherical coordinate system the Navier Stokes equations.
- coframe e r=d r, e theta =r*d theta, e phi = r*sin theta *d phi;
- frame x;
- fdomain v=v(t,r,theta,phi),p=p(r,theta,phi);
- pform v(k)=0,p=0,w=1;
- % We first calculate the convective derivative.
- w := v(-k)*e(k)$
- factor e; on rat;
- cdv := @(w,t) + (v(k)*x(-k)) |_ w - 1/2*d(v(k)*v(-k));
- %next we calculate the viscous terms;
- visc := nu*(d#d# w - #d#d w) + mu*d#d# w;
- % Finally we add the pressure term and print the components of the
- % whole equation.
- pform nasteq=1,nast(k)=0;
- nasteq := cdv - visc + 1/rho*d p$
- factor @;
- nast(-k) := x(-k) _| nasteq;
- remfac @,e;
- clear v k,x k,nast k,cdv,visc,p,w,nasteq,e k;
- remfdomain p,v;
- % Problem:
- % --------
- % Calculate from the Lagrangian of a vibrating rod the equation of
- % motion and show that the invariance under time translation leads
- % to a conserved current.
- pform {y,x,t,q,j}=0,lagr=2;
- fdomain y=y(x,t),q=q(x),j=j(x);
- factor ^;
- lagr := 1/2*(rho*q*@(y,t)**2 - e*j*@(y,x,x)**2)*d x^d t;
- vardf(lagr,y);
- % The Lagrangian does not explicitly depend on time; therefore the
- % vector field @ t generates a symmetry. The conserved current is
- pform c=1;
- factor d;
- c := noether(lagr,y,@ t);
- % The exterior derivative of this must be zero or a multiple of the
- % equation of motion (weak conservation law) to be a conserved current.
- remfac d;
- d c;
- % i.e. it is a multiple of the equation of motion.
- clear lagr,c,j,y,q;
- remfdomain y,q,j;
- % Problem:
- % --------
- % Show that the metric structure given by Eguchi and Hanson induces a
- % self-dual curvature.
- % c.f. T. Eguchi, P.B. Gilkey, A.J. Hanson, "Gravitation, Gauge Theories
- % and Differential Geometry", Physics Reports 66, 213, 1980
- for all x let cos(x)**2=1-sin(x)**2;
- pform f=0,g=0;
- fdomain f=f(r), g=g(r);
- coframe o(r) = f*d r,
- o(theta) = (r/2)*(sin(psi)*d theta - sin(theta)*cos(psi)*d phi),
- o(phi) = (r/2)*(-cos(psi)*d theta - sin(theta)*sin(psi)*d phi),
- o(psi) = (r/2)*g*(d psi + cos(theta)*d phi);
- frame e;
- pform gamma(a,b)=1,curv2(a,b)=2;
- index_symmetries gamma(a,b),curv2(a,b): antisymmetric;
- factor o;
- gamma(-a,-b) := -(1/2)*( e(-a) _| (e(-c) _| (d o(-b)))
- -e(-b) _| (e(-a) _| (d o(-c)))
- +e(-c) _| (e(-b) _| (d o(-a))) )*o(c)$
- curv2(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c)$
- let f=1/g,g=sqrt(1-(a/r)**4);
- pform chck(k,l)=2;
- index_symmetries chck(k,l): antisymmetric;
- % The following has to be zero for a self-dual curvature.
- chck(k,l) := 1/2*eps(k,l,m,n)*curv2(-m,-n) + curv2(k,l);
- clear gamma(a,b),curv2(a,b),f,g,chck(a,b),o(k),e(k),r,phi,psi;
- remfdomain f,g;
- % Example: 6-dimensional FRW model with quadratic curvature terms in
- % -------
- % the Lagrangian (Lanczos and Gauss-Bonnet terms).
- % cf. Henriques, Nuclear Physics, B277, 621 (1986)
- for all x let cos(x)**2+sin(x)**2=1;
- pform {r,s}=0;
- fdomain r=r(t),s=s(t);
- coframe o(t) = d t,
- o(1) = r*d u/(1 + k*(u**2)/4),
- o(2) = r*u*d theta/(1 + k*(u**2)/4),
- o(3) = r*u*sin(theta)*d phi/(1 + k*(u**2)/4),
- o(4) = s*d v1,
- o(5) = s*sin(v1)*d v2
- with metric g =-o(t)*o(t)+o(1)*o(1)+o(2)*o(2)+o(3)*o(3)
- +o(4)*o(4)+o(5)*o(5);
- frame e;
- on nero; factor o,^;
- riemannconx om;
- pform curv(k,l)=2,{riemann(a,b,c,d),ricci(a,b),riccisc}=0;
- index_symmetries curv(k,l): antisymmetric,
- riemann(k,l,m,n): antisymmetric in {k,l},{m,n}
- symmetric in {{k,l},{m,n}},
- ricci(k,l): symmetric;
- curv(k,l) := d om(k,l) + om(k,-m)^om(m,l);
- riemann(a,b,c,d) := e(d) _| (e (c) _| curv(a,b));
- % The rest is done in the Ricci calculus language,
- ricci(-a,-b) := riemann(c,-a,-d,-b)*g(-c,d);
- riccisc := ricci(-a,-b)*g(a,b);
- pform {laglanc,inv1,inv2} = 0;
- index_symmetries riemc3(k,l),riemri(k,l),
- hlang(k,l),einst(k,l): symmetric;
- pform {riemc3(i,j),riemri(i,j)}=0;
- riemc3(-i,-j) := riemann(-i,-k,-l,-m)*riemann(-j,k,l,m)$
- inv1 := riemc3(-i,-j)*g(i,j);
- riemri(-i,-j) := 2*riemann(-i,-k,-j,-l)*ricci(k,l)$
- inv2 := ricci(-a,-b)*ricci(a,b);
- laglanc := (1/2)*(inv1 - 4*inv2 + riccisc**2);
- pform {einst(a,b),hlang(a,b)}=0;
- hlang(-i,-j) := 2*(riemc3(-i,-j) - riemri(-i,-j) -
- 2*ricci(-i,-k)*ricci(-j,K) +
- riccisc*ricci(-i,-j) - (1/2)*laglanc*g(-i,-j));
- % The complete Einstein tensor:
- einst(-i,-j) := (ricci(-i,-j) - (1/2)*riccisc*g(-i,-j))*alp1 +
- hlang(-i,-j)*alp2$
- alp1 := 1$
- factor alp2;
- einst(-i,-j) := einst(-i,-j);
- clear o(k),e(k),riemc3(i,j),riemri(i,j),curv(k,l),riemann(a,b,c,d),
- ricci(a,b),riccisc,t,u,v1,v2,theta,phi,r,om(k,l),einst(a,b),
- hlang(a,b);
- remfdomain r,s;
- % Problem:
- % --------
- % Calculate for a given coframe and given torsion the Riemannian part and
- % the torsion induced part of the connection. Calculate the curvature.
- % For a more elaborate example see E.Schruefer, F.W. Hehl, J.D. McCrea,
- % "Application of the REDUCE package EXCALC to the Poincare gauge field
- % theory of gravity", GRG Journal, vol. 19, (1988) 197--218
- pform {ff, gg}=0;
- fdomain ff=ff(r), gg=gg(r);
- coframe o(4) = d u + 2*b0*cos(theta)*d phi,
- o(1) = ff*(d u + 2*b0*cos(theta)*d phi) + d r,
- o(2) = gg*d theta,
- o(3) = gg*sin(theta)*d phi
- with metric g = -o(4)*o(1)-o(4)*o(1)+o(2)*o(2)+o(3)*o(3);
- frame e;
- pform {tor(a),gwt(a)}=2,gamma(a,b)=1,
- {u1,u3,u5}=0;
- index_symmetries gamma(a,b): antisymmetric;
- fdomain u1=u1(r),u3=u3(r),u5=u5(r);
- tor(4) := 0$
- tor(1) := -u5*o(4)^o(1) - 2*u3*o(2)^o(3)$
- tor(2) := u1*o(4)^o(2) + u3*o(4)^o(3)$
- tor(3) := u1*o(4)^o(3) - u3*o(4)^o(2)$
- gwt(-a) := d o(-a) - tor(-a)$
- % The following is the combined connection.
- % The Riemannian part could have equally well been calculated by the
- % RIEMANNCONX statement.
- gamma(-a,-b) := (1/2)*( e(-b) _| (e(-c) _| gwt(-a))
- +e(-c) _| (e(-a) _| gwt(-b))
- -e(-a) _| (e(-b) _| gwt(-c)) )*o(c);
- pform curv(a,b)=2;
- index_symmetries curv(a,b): antisymmetric;
- factor ^;
- curv(-a,b) := d gamma(-a,b) + gamma(-c,b)^gamma(-a,c);
- clear o(k),e(k),curv(a,b),gamma(a,b),theta,phi,x,y,z,r,s,t,u,v,p,q,c,cs;
- remfdomain u1,u3,u5,ff,gg;
- showtime;
- end;
|