1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848 |
- Tue Feb 10 12:28:07 2004 run on Linux
- *** ^ redefined
- +++ depends redefined
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Twisting type N solutions of GR %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % The problem is to analyse an ansatz for a particular type of vacuum
- % solution to Einstein's equations for general relativity. The analysis was
- % described by Finley and Price (Proc Aspects of GR and Math Phys
- % (Plebanski Festschrift), Mexico City June 1993). The equations resulting
- % from the ansatz are:
- % F - F*gamma = 0
- % 3 3
- %
- % F *x + 2*F *x + x *F - x *Delta*F = 0
- % 2 2 1 2 1 2 1 2 2 1
- %
- % 2*F *x + 2*F *x + 2*F *x + 2*F *x + x *F = 0
- % 2 3 2 3 2 2 3 3 3 2 2 3 3 2 2 3 2 2 3 3
- %
- % Delta =0 Delta neq 0
- % 3 1
- %
- % gamma =0 gamma neq 0
- % 2 1
- % where the unknowns are {F,x,gamma,Delta} and the indices refer to
- % derivatives with respect to an anholonomic basis. The highest order is 4,
- % but the 4th order jet bundle is too large for practical computation, so
- % it is necessary to construct partial prolongations. There is a single
- % known solution, due to Hauser, which is verified at the end.
- on evallhseqp,edssloppy,edsverbose;
- off arbvars,edsdebug;
- pform {F,x,Delta,gamma,v,y,u}=0;
- pform v(i)=0,omega(i)=1;
- indexrange {i,j,k,l}={1,2,3};
- % Construct J1({v,y,u},{x}) and transform coordinates. Use ordering
- % statement to get v eliminated in favour of x where possible.
- % NB Coordinate change cc1 is invertible only when x(-1) neq 0.
- J1 := contact(1,{v,y,u},{x});
- j1 := EDS({d x - x *d u - x *d v - x *d y},d u^d v^d y)
- u v y
- korder x(-1),x(-2),v(-3);
- cc1 := {x(-v) = x(-1),
- x(-y) = x(-2),
- x(-u) = -x(-1)*v(-3)};
- cc1 := {x =x ,
- v 1
- x =x ,
- y 2
- x = - x *v }
- u 1 3
- J1 := restrict(pullback(J1,cc1),{x(-1) neq 0});
- j1 := EDS({d x + v *x *d u - x *d v - x *d y},d u^d v^d y)
- 3 1 1 2
- % Set up anholonomic cobasis
- bc1 := {omega(1) = d v - v(-3)*d u,
- omega(2) = d y,
- omega(3) = d u};
- 1 2 3
- bc1 := {omega = - v *d u + d v,omega =d y,omega =d u}
- 3
- J1 := transform(J1,bc1);
- 1 2 1 2 3
- j1 := EDS({d x - x *omega - x *omega },omega ^omega ^omega )
- 1 2
- % Prolong to J421: 4th order in x, 2nd in F and 1st in rest
- J2 := prolong J1$
- Prolongation using new equations:
- - x
- 2 3
- v =---------
- 3 2 x
- 1
- - x
- 1 3
- v =---------
- 3 1 x
- 1
- x =x
- 2 1 1 2
- x neq 0
- 1
- J20 := J2 cross {F}$
- J31 := prolong J20$
- Prolongation using new equations:
- 2*x *x - x *x
- 1 3 2 3 1 2 3 3
- v =-------------------------
- 3 3 2 2
- (x )
- 1
- 2
- - x *x + 2*(x )
- 1 3 3 1 1 3
- v =--------------------------
- 3 3 1 2
- (x )
- 1
- - x *x + x *x
- 1 2 2 3 1 2 2 3
- x =--------------------------
- 2 3 2 x
- 1
- x *x - x *x
- 1 2 3 1 1 2 1 3
- x =-----------------------
- 2 3 1 x
- 1
- x =x
- 2 2 1 1 2 2
- - x *x + x *x
- 1 1 2 3 1 2 3 1
- x =--------------------------
- 1 3 2 x
- 1
- x *x - x *x
- 1 1 3 1 1 1 1 3
- x =-----------------------
- 1 3 1 x
- 1
- x =x
- 1 2 1 1 1 2
- x neq 0
- 1
- J310 := J31 cross {Delta,gamma}$
- J421 := prolong J310$
- Prolongation using new equations:
- - f *x + f *x
- 1 2 3 2 3 1
- f =----------------------
- 3 2 x
- 1
- f *x - f *x
- 1 3 1 1 1 3
- f =-------------------
- 3 1 x
- 1
- f =f
- 2 1 1 2
- 2 2
- 3*x *x *x - 6*(x ) *x + 3*x *x *x - (x ) *x
- 1 3 3 1 2 3 1 3 2 3 1 3 1 2 3 3 1 2 3 3 3
- v =-----------------------------------------------------------------------
- 3 3 3 2 3
- (x )
- 1
- 2 3
- - x *(x ) + 6*x *x *x - 6*(x )
- 1 3 3 3 1 1 3 3 1 3 1 1 3
- v =--------------------------------------------------
- 3 3 3 1 3
- (x )
- 1
- x
- 2 3 3 2
- 2
- - 2*x *x *x + 2*x *x *x - x *x *x + (x ) *x
- 1 2 3 1 2 3 1 2 1 3 2 3 1 2 1 2 3 3 1 2 2 3 3
- =--------------------------------------------------------------------------
- 2
- (x )
- 1
- 2 2
- x *(x ) - 2*x *x *x - x *x *x + 2*x *(x )
- 1 2 3 3 1 1 2 3 1 3 1 1 2 1 3 3 1 1 2 1 3
- x =---------------------------------------------------------------------
- 2 3 3 1 2
- (x )
- 1
- - x *x + x *x
- 1 2 2 2 3 1 2 2 2 3
- x =------------------------------
- 2 2 3 2 x
- 1
- x *x - x *x
- 1 2 2 3 1 1 2 2 1 3
- x =---------------------------
- 2 2 3 1 x
- 1
- x =x
- 2 2 2 1 1 2 2 2
- x
- 1 3 3 2
- 2
- - 2*x *x *x + 2*x *x *x - x *x *x + x *(x )
- 1 1 3 1 2 3 1 1 1 3 2 3 1 1 1 2 3 3 1 2 3 3 1
- =--------------------------------------------------------------------------
- 2
- (x )
- 1
- 2 2
- x *(x ) - 2*x *x *x - x *x *x + 2*x *(x )
- 1 1 3 3 1 1 1 3 1 3 1 1 1 1 3 3 1 1 1 1 3
- x =---------------------------------------------------------------------
- 1 3 3 1 2
- (x )
- 1
- - x *x + x *x
- 1 1 2 2 3 1 2 2 3 1
- x =------------------------------
- 1 2 3 2 x
- 1
- x *x - x *x
- 1 1 2 3 1 1 1 2 1 3
- x =---------------------------
- 1 2 3 1 x
- 1
- x =x
- 1 2 2 1 1 1 2 2
- - x *x + x *x
- 1 1 1 2 3 1 1 2 3 1
- x =------------------------------
- 1 1 3 2 x
- 1
- x *x - x *x
- 1 1 1 3 1 1 1 1 1 3
- x =---------------------------
- 1 1 3 1 x
- 1
- x =x
- 1 1 2 1 1 1 1 2
- x neq 0
- 1
- cc4 := first pullback_maps;
- x *f - f *x
- 1 2 3 1 2 3
- cc4 := {f =-------------------,
- 3 2 x
- 1
- x *f - f *x
- 1 1 3 1 1 3
- f =-------------------,
- 3 1 x
- 1
- f =f ,
- 2 1 1 2
- 2
- v =( - (x ) *x + 3*x *x *x + 3*x *x *x
- 3 3 3 2 1 2 3 3 3 1 1 3 3 2 3 1 1 3 2 3 3
- 2 3
- - 6*(x ) *x )/(x ) ,
- 1 3 2 3 1
- 2 3
- - (x ) *x + 6*x *x *x - 6*(x )
- 1 1 3 3 3 1 1 3 3 1 3 1 3
- v =--------------------------------------------------,
- 3 3 3 1 3
- (x )
- 1
- 2
- x =((x ) *x - 2*x *x *x - x *x *x
- 2 3 3 2 1 2 2 3 3 1 1 2 3 2 3 1 1 2 2 3 3
- 2
- + 2*x *x *x )/(x ) ,
- 1 2 1 3 2 3 1
- x
- 2 3 3 1
- 2 2
- (x ) *x - 2*x *x *x - x *x *x + 2*x *(x )
- 1 1 2 3 3 1 1 2 3 1 3 1 1 2 1 3 3 1 2 1 3
- =---------------------------------------------------------------------,
- 2
- (x )
- 1
- x *x - x *x
- 1 2 2 2 3 1 2 2 2 3
- x =---------------------------,
- 2 2 3 2 x
- 1
- x *x - x *x
- 1 1 2 2 3 1 2 2 1 3
- x =---------------------------,
- 2 2 3 1 x
- 1
- x =x ,
- 2 2 2 1 1 2 2 2
- 2
- x =((x ) *x - 2*x *x *x - x *x *x
- 1 3 3 2 1 1 2 3 3 1 1 1 3 2 3 1 1 1 2 3 3
- 2
- + 2*x *x *x )/(x ) ,
- 1 1 1 3 2 3 1
- x
- 1 3 3 1
- 2 2
- (x ) *x - 2*x *x *x - x *x *x + 2*x *(x )
- 1 1 1 3 3 1 1 1 3 1 3 1 1 1 1 3 3 1 1 1 3
- =---------------------------------------------------------------------,
- 2
- (x )
- 1
- x *x - x *x
- 1 1 2 2 3 1 1 2 2 3
- x =---------------------------,
- 1 2 3 2 x
- 1
- x *x - x *x
- 1 1 1 2 3 1 1 2 1 3
- x =---------------------------,
- 1 2 3 1 x
- 1
- x =x ,
- 1 2 2 1 1 1 2 2
- x *x - x *x
- 1 1 1 2 3 1 1 1 2 3
- x =---------------------------,
- 1 1 3 2 x
- 1
- x *x - x *x
- 1 1 1 1 3 1 1 1 1 3
- x =---------------------------,
- 1 1 3 1 x
- 1
- x =x ,
- 1 1 2 1 1 1 1 2
- x neq 0}
- 1
- % Apply first order de and restrictions
- de1 := {Delta(-3) = 0,
- gamma(-2) = 0,
- Delta(-1) neq 0,
- gamma(-1) neq 0};
- de1 := {delta =0,
- 3
- gamma =0,
- 2
- delta neq 0,
- 1
- gamma neq 0}
- 1
- J421 := pullback(J421,de1)$
- % Main de in original coordinates
- de2 := {F(-3,-3) - gamma*F,
- x(-1)*F(-2,-2) + 2*x(-1,-2)*F(-2)
- + (x(-1,-2,-2) - x(-1)*Delta)*F,
- x(-2,-3)*(F(-2,-3)+F(-3,-2)) + x(-2,-2,-3)*F(-3)
- + x(-2,-3,-3)*F(-2) + (1/2)*x(-2,-2,-3,-3)*F};
- de2 := {f - f*gamma,
- 3 3
- f *x + 2*f *x + x *f - x *delta*f,
- 2 2 1 2 1 2 1 2 2 1
- 2*f *x + 2*f *x + 2*f *x + 2*f *x + x *f
- 2 3 2 3 2 2 3 3 3 2 2 3 3 2 2 3 2 2 3 3
- --------------------------------------------------------------------}
- 2
- % This is not expressed in terms of current coordinates.
- % Missing coordinates are seen from 1-form variables in following
- d de2 xmod cobasis J421;
- {d f *x }
- 3 2 2 3
- % The necessary equation is contained in the last prolongation
- pullback(d de2,cc4) xmod cobasis J421;
- {}
- % Apply main de
- pb1 := first solve(pullback(de2,cc4),{F(-3,-3),F(-2,-2),F(-2,-3)});
- pb1 := {f =f*gamma,
- 3 3
- - 2*f *x - x *f + x *delta*f
- 2 1 2 1 2 2 1
- f =--------------------------------------,
- 2 2 x
- 1
- 2
- 2*f *(x ) - 2*f *x *x - 2*f *x *x - x *x *f
- 1 2 3 2 1 2 3 3 3 1 2 2 3 1 2 2 3 3
- f =----------------------------------------------------------------}
- 2 3 4*x *x
- 1 2 3
- Y421 := pullback(J421,pb1)$
- % Check involution
- on ranpos;
- characters Y421;
- {15,7,0}
- dim_grassmann_variety Y421;
- 28
- % 15+2*7 = 29 > 28: Y421 not involutive, so prolong
- Y532 := prolong Y421$
- Prolongation using new equations:
- - gamma *x
- 1 2 3
- gamma =----------------
- 3 2 x
- 1
- gamma *x - gamma *x
- 1 3 1 1 1 3
- gamma =---------------------------
- 3 1 x
- 1
- gamma =0
- 1 2
- delta *x
- 1 2 3
- delta =-------------
- 2 3 x
- 1
- delta =delta
- 2 1 1 2
- delta *x
- 1 1 3
- delta =-------------
- 1 3 x
- 1
- 2 2
- f =(2*f *x *x + f *x *x - 2*f *(x ) + f *(x ) *gamma
- 1 3 3 1 3 1 3 1 1 1 3 3 1 1 1 3 1 1
- 2 2
- + gamma *(x ) *f)/(x )
- 1 1 1
- 3 2 2
- f =( - 2*f *x *(x ) + 4*f *x *x *(x ) - 2*f *(x ) *x *x
- 1 3 2 1 1 1 2 3 1 2 1 3 1 2 3 1 2 1 2 3 3 2 3
- 2 3 2
- - 2*f *(x ) *x *x - 2*f *x *(x ) + 2*f *x *x *(x )
- 1 3 1 2 2 3 2 3 1 1 1 2 3 1 1 2 3 1 2 3
- 2
- - 2*f *x *x *(x ) + 2*f *x *x *x *x
- 1 1 2 1 3 2 3 1 1 3 1 2 2 3 2 3
- 2 2
- - f *(x ) *x *x - 2*f *x *(x ) *x
- 1 1 2 2 3 3 2 3 2 1 2 3 3 1 2 3
- 2
- + 4*f *x *x *x *x + 2*f *x *(x ) *x
- 2 1 2 3 1 3 1 2 3 2 1 2 3 1 2 3 3
- 2
- + 2*f *x *x *x *x - 4*f *x *(x ) *x
- 2 1 2 1 3 3 1 2 3 2 1 2 1 3 2 3
- 2
- - 2*f *x *x *x *x - 2*f *x *(x ) *x
- 2 1 2 1 3 1 2 3 3 3 1 2 2 3 1 2 3
- 2
- + 2*f *x *x *x *x + 2*f *x *(x ) *x
- 3 1 2 2 1 3 1 2 3 3 1 2 3 1 2 2 3
- 2
- - 2*f *x *x *x *x + x *(x ) *x *f
- 3 1 2 1 3 1 2 2 3 1 2 3 1 2 2 3 3
- 2 2 2
- - x *x *x *x *f - (x ) *x *x *f)/(4*(x ) *(x ) )
- 1 2 1 3 1 2 2 3 3 1 2 2 3 3 1 2 3 1 2 3
- f *x - f *x
- 1 1 3 1 1 1 1 3
- f =-----------------------
- 1 3 1 x
- 1
- 3 2 2
- f =(2*f *x *(x ) + 4*f *x *x *(x ) - 2*f *(x ) *x *x
- 1 2 3 1 1 1 2 3 1 2 1 3 1 2 3 1 2 1 2 3 3 2 3
- 2 3 2
- - 2*f *(x ) *x *x - 2*f *x *(x ) + 2*f *x *x *(x )
- 1 3 1 2 2 3 2 3 1 1 1 2 3 1 1 2 3 1 2 3
- 2
- - 2*f *x *x *(x ) + 2*f *x *x *x *x
- 1 1 2 1 3 2 3 1 1 3 1 2 2 3 2 3
- 2 2
- - f *(x ) *x *x - 2*f *x *(x ) *x
- 1 1 2 2 3 3 2 3 2 1 2 3 3 1 2 3
- 2
- + 4*f *x *x *x *x + 2*f *x *(x ) *x
- 2 1 2 3 1 3 1 2 3 2 1 2 3 1 2 3 3
- 2
- + 2*f *x *x *x *x - 4*f *x *(x ) *x
- 2 1 2 1 3 3 1 2 3 2 1 2 1 3 2 3
- 2
- - 2*f *x *x *x *x - 2*f *x *(x ) *x
- 2 1 2 1 3 1 2 3 3 3 1 2 2 3 1 2 3
- 2
- + 2*f *x *x *x *x + 2*f *x *(x ) *x
- 3 1 2 2 1 3 1 2 3 3 1 2 3 1 2 2 3
- 2
- - 2*f *x *x *x *x + x *(x ) *x *f
- 3 1 2 1 3 1 2 2 3 1 2 3 1 2 2 3 3
- 2 2 2
- - x *x *x *x *f - (x ) *x *x *f)/(4*(x ) *(x ) )
- 1 2 1 3 1 2 2 3 3 1 2 2 3 3 1 2 3 1 2 3
- 2 2
- f =(delta *(x ) *f - 2*f *x *x - f *x *x + f *(x ) *delta
- 1 2 2 1 1 1 2 1 2 1 1 1 2 2 1 1 1
- - 2*f *x *x + 2*f *x *x - x *x *f + x *x *f)/
- 2 1 1 2 1 2 1 1 1 2 1 1 2 2 1 1 1 1 2 2
- 2
- (x )
- 1
- f =f
- 1 2 1 1 1 2
- 2
- v =(4*x *(x ) *x - 24*x *x *x *x
- 3 3 3 3 2 1 3 3 3 1 2 3 1 3 3 1 3 1 2 3
- 2 3 2
- + 6*x *(x ) *x + 24*(x ) *x - 12*(x ) *x *x
- 1 3 3 1 2 3 3 1 3 2 3 1 3 1 2 3 3
- 2 3 4
- + 4*x *(x ) *x - (x ) *x )/(x )
- 1 3 1 2 3 3 3 1 2 3 3 3 3 1
- 3 2 2 2
- v =( - x *(x ) + 8*x *x *(x ) + 6*(x ) *(x )
- 3 3 3 3 1 1 3 3 3 3 1 1 3 3 3 1 3 1 1 3 3 1
- 2 4 4
- - 36*x *(x ) *x + 24*(x ) )/(x )
- 1 3 3 1 3 1 1 3 1
- 2 3 3
- x =( - 12*f *(x ) *(x ) + 12*f *x *x *(x )
- 2 3 3 3 2 1 3 1 2 3 1 1 3 1 2 3
- 2 2 3
- - 6*f *(x ) *x *(x ) - 4*f *(x ) *x *x
- 1 1 2 3 3 2 3 2 1 2 3 3 3 2 3
- 3 2 3 2
- + 6*f *(x ) *(x ) - 8*f *(x ) *(x ) *gamma
- 2 1 2 3 3 2 1 2 3
- 3 3
- - 6*f *(x ) *x *x + 6*f *(x ) *x *x
- 3 1 2 2 3 3 2 3 3 1 2 2 3 2 3 3
- 2 2 2
- - 6*x *(x ) *(x ) *f + 12*x *x *x *(x ) *f
- 1 2 3 3 1 2 3 1 2 3 1 3 1 2 3
- 2 2
- - 6*x *(x ) *x *x *f + 6*x *x *x *(x ) *f
- 1 2 3 1 2 3 3 2 3 1 2 1 3 3 1 2 3
- 2 2
- - 12*x *(x ) *(x ) *f + 6*x *x *x *x *x *f
- 1 2 1 3 2 3 1 2 1 3 1 2 3 3 2 3
- 2 3
- - 2*x *(x ) *x *x *f + 3*(x ) *x *x *f
- 1 2 1 2 3 3 3 2 3 1 2 2 3 3 2 3 3
- 3 3
- - 4*(x ) *x *x *f*gamma)/(2*(x ) *x *f)
- 1 2 2 3 2 3 1 2 3
- 3 2 2
- x =(x *(x ) - 3*x *x *(x ) - 3*x *x *(x )
- 2 3 3 3 1 1 2 3 3 3 1 1 2 3 3 1 3 1 1 2 3 1 3 3 1
- 2 2
- + 6*x *(x ) *x - x *x *(x ) + 6*x *x *x *x
- 1 2 3 1 3 1 1 2 1 3 3 3 1 1 2 1 3 3 1 3 1
- 3 3
- - 6*x *(x ) )/(x )
- 1 2 1 3 1
- 3 3 2
- x =( - 12*f *x *(x ) + 12*f *x *(x ) - 6*f *x *x *(x )
- 2 2 3 3 3 1 3 1 2 3 1 1 3 2 3 1 1 2 3 3 2 3
- 2 2 2
- - 4*f *(x ) *x *x + 6*f *(x ) *(x )
- 2 1 2 3 3 3 2 3 2 1 2 3 3
- 2 2 2
- - 8*f *(x ) *(x ) *gamma - 6*f *(x ) *x *x
- 2 1 2 3 3 1 2 2 3 3 2 3
- 2 2
- + 6*f *(x ) *x *x + 3*(x ) *x *x *f
- 3 1 2 2 3 2 3 3 1 2 2 3 3 2 3 3
- 2 2
- - 4*(x ) *x *x *f*gamma)/(2*(x ) *x *f)
- 1 2 2 3 2 3 1 2 3
- 3 2
- x =(12*f *x *(x ) + 6*f *x *x *(x )
- 2 2 3 3 2 1 2 1 2 3 1 1 2 2 3 2 3
- 2 2
- + 24*f *x *x *(x ) - 24*f *x *x *(x )
- 2 1 2 3 1 2 3 2 1 2 1 3 2 3
- 2 2
- - 6*f *(x ) *x *x + 6*f *(x ) *x *x
- 2 1 2 2 3 3 2 3 2 1 2 2 3 2 3 3
- 2
- + 12*f *x *x *(x ) - 12*f *x *x *x *x
- 3 1 2 2 1 2 3 3 1 2 1 2 2 3 2 3
- 2 2 2
- - 4*f *(x ) *x *x + 6*f *(x ) *(x )
- 3 1 2 2 2 3 2 3 3 1 2 2 3
- 2 2 2
- - 8*f *(x ) *(x ) *delta + 8*x *x *(x ) *f
- 3 1 2 3 1 2 2 3 1 2 3
- 2
- - 8*x *x *(x ) *f + 4*x *x *x *x *f
- 1 2 2 1 3 2 3 1 2 2 1 2 3 3 2 3
- 2
- - 6*x *x *x *x *f + 3*(x ) *x *x *f
- 1 2 1 2 2 3 3 2 3 1 2 2 3 3 2 2 3
- 2 2
- - 4*(x ) *x *x *delta*f)/(2*(x ) *x *f)
- 1 2 3 3 2 3 1 2 3
- 3 2
- x =(12*f *x *(x ) + 6*f *x *x *(x )
- 2 2 2 3 3 1 2 1 2 3 1 1 2 2 3 2 3
- 2 2
- + 24*f *x *x *(x ) - 24*f *x *x *(x )
- 2 1 2 3 1 2 3 2 1 2 1 3 2 3
- 2 2
- - 6*f *(x ) *x *x + 6*f *(x ) *x *x
- 2 1 2 2 3 3 2 3 2 1 2 2 3 2 3 3
- 2
- + 12*f *x *x *(x ) - 12*f *x *x *x *x
- 3 1 2 2 1 2 3 3 1 2 1 2 2 3 2 3
- 2 2 2
- - 4*f *(x ) *x *x + 6*f *(x ) *(x )
- 3 1 2 2 2 3 2 3 3 1 2 2 3
- 2 2 2
- - 8*f *(x ) *(x ) *delta + 12*x *x *(x ) *f
- 3 1 2 3 1 2 2 3 1 2 3
- 2
- - 12*x *x *(x ) *f + 6*x *x *x *x *f
- 1 2 2 1 3 2 3 1 2 2 1 2 3 3 2 3
- 2
- - 6*x *x *x *x *f + 3*(x ) *x *x *f
- 1 2 1 2 2 3 3 2 3 1 2 2 3 3 2 2 3
- 2 2
- - 4*(x ) *x *x *delta*f)/(2*(x ) *x *f)
- 1 2 3 3 2 3 1 2 3
- - x *x + x *x
- 1 2 2 2 2 3 1 2 2 2 2 3
- x =----------------------------------
- 2 2 2 3 2 x
- 1
- x *x - x *x
- 1 2 2 2 3 1 1 2 2 2 1 3
- x =-------------------------------
- 2 2 2 3 1 x
- 1
- x =x
- 2 2 2 2 1 1 2 2 2 2
- 2
- x =( - 3*x *(x ) *x + 6*x *x *x *x
- 1 3 3 3 2 1 1 3 3 1 2 3 1 1 3 1 3 1 2 3
- 2
- - 3*x *(x ) *x + 3*x *x *x *x
- 1 1 3 1 2 3 3 1 1 1 3 3 1 2 3
- 2 2
- - 6*x *(x ) *x + 3*x *x *x *x - x *(x ) *x
- 1 1 1 3 2 3 1 1 1 3 1 2 3 3 1 1 1 2 3 3 3
- 3 3
- + x *(x ) )/(x )
- 1 2 3 3 3 1 1
- 3 2 2
- x =(x *(x ) - 3*x *x *(x ) - 3*x *x *(x )
- 1 3 3 3 1 1 1 3 3 3 1 1 1 3 3 1 3 1 1 1 3 1 3 3 1
- 2 2
- + 6*x *(x ) *x - x *x *(x ) + 6*x *x *x *x
- 1 1 3 1 3 1 1 1 1 3 3 3 1 1 1 1 3 3 1 3 1
- 3 3
- - 6*x *(x ) )/(x )
- 1 1 1 3 1
- x =( - 2*x *x *x + 2*x *x *x - x *x *x
- 1 2 3 3 2 1 1 2 3 1 2 3 1 1 2 1 3 2 3 1 1 2 1 2 3 3
- 2
- + 2*x *x *x + x *x *x - 2*x *(x )
- 1 2 2 3 1 3 1 1 2 2 1 3 3 1 1 2 2 1 3
- 2 2
- + (x ) *x )/(x )
- 1 2 2 3 3 1 1
- x
- 1 2 3 3 1
- 2 2
- x *(x ) - 2*x *x *x - x *x *x + 2*x *(x )
- 1 1 2 3 3 1 1 1 2 3 1 3 1 1 1 2 1 3 3 1 1 1 2 1 3
- =-----------------------------------------------------------------------------
- 2
- (x )
- 1
- 2
- x =(2*x *x *x + x *x *x - 2*x *(x )
- 1 2 2 3 3 1 2 2 3 1 3 1 1 2 2 1 3 3 1 1 2 2 1 3
- 2 2
- + (x ) *x )/(x )
- 1 2 2 3 3 1 1
- - x *x + x *x
- 1 1 2 2 2 3 1 2 2 2 3 1
- x =----------------------------------
- 1 2 2 3 2 x
- 1
- x *x - x *x
- 1 1 2 2 3 1 1 1 2 2 1 3
- x =-------------------------------
- 1 2 2 3 1 x
- 1
- x =x
- 1 2 2 2 1 1 1 2 2 2
- x =( - 2*x *x *x + 2*x *x *x - x *x *x
- 1 1 3 3 2 1 1 1 3 1 2 3 1 1 1 1 3 2 3 1 1 1 1 2 3 3
- 2 2
- + x *(x ) )/(x )
- 1 1 2 3 3 1 1
- x
- 1 1 3 3 1
- 2 2
- x *(x ) - 2*x *x *x - x *x *x + 2*x *(x )
- 1 1 1 3 3 1 1 1 1 3 1 3 1 1 1 1 1 3 3 1 1 1 1 1 3
- =-----------------------------------------------------------------------------
- 2
- (x )
- 1
- - x *x + x *x
- 1 1 1 2 2 3 1 1 2 2 3 1
- x =----------------------------------
- 1 1 2 3 2 x
- 1
- x *x - x *x
- 1 1 1 2 3 1 1 1 1 2 1 3
- x =-------------------------------
- 1 1 2 3 1 x
- 1
- x =x
- 1 1 2 2 1 1 1 1 2 2
- - x *x + x *x
- 1 1 1 1 2 3 1 1 1 2 3 1
- x =----------------------------------
- 1 1 1 3 2 x
- 1
- x *x - x *x
- 1 1 1 1 3 1 1 1 1 1 1 3
- x =-------------------------------
- 1 1 1 3 1 x
- 1
- x =x
- 1 1 1 2 1 1 1 1 1 2
- x neq 0
- 1
- x neq 0
- 2 3
- f neq 0
- characters Y532;
- {22,6,0}
- dim_grassmann_variety Y532;
- 34
- % 22+2*6 = 34: just need to check for integrability conditions
- torsion Y532;
- {}
- % Y532 involutive. Dimensions?
- dim Y532;
- 79
- length one_forms Y532;
- 48
- % The following puts in part of Hauser's solution and ends up with an ODE
- % system (all characters 0), so no more solutions, as described by Finley
- % at MG6.
- hauser := {x=-v+(1/2)*(y+u)**2,delta=3/(8x),gamma=3/(8v)};
- 2 2
- u + 2*u*y - 2*v + y
- hauser := {x=-----------------------,
- 2
- 3
- delta=-----,
- 8*x
- 3
- gamma=-----}
- 8*v
- H532 := pullback(Y532,hauser)$
- New 0-form conditions detected
- 2
- - 8*gamma *v - 3*v
- 3 3
- -----------------------
- 2
- 8*v
- 2
- - 8*gamma *v - 3
- 1
- --------------------
- 2
- 8*v
- 3*(v - u - y)
- 3
- ----------------------------------------------------------------------------
- 4 3 2 2 2 3 2 2 4
- 2*(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y + y )
- 4 3 2 2 2
- ( - 2*delta *u - 8*delta *u *y + 8*delta *u *v - 12*delta *u *y
- 2 2 2 2
- 3 2 2 4
- + 16*delta *u*v*y - 8*delta *u*y - 8*delta *v + 8*delta *v*y - 2*delta *y
- 2 2 2 2 2
- 4 3 2 2 2 3 2
- - 3*u - 3*y)/(2*(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v
- 2 4
- - 4*v*y + y ))
- 4 3 2 2 2
- ( - 2*delta *u - 8*delta *u *y + 8*delta *u *v - 12*delta *u *y
- 1 1 1 1
- 3 2 2 4
- + 16*delta *u*v*y - 8*delta *u*y - 8*delta *v + 8*delta *v*y - 2*delta *y
- 1 1 1 1 1
- 4 3 2 2 2 3 2 2
- + 3)/(2*(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y
- 4
- + y ))
- - v + u + y
- 3
- - x + u + y
- 2
- - (x + 1)
- 1
- lift ws;
- Solving 0-forms
- New equations:
- - 3*(u + y)
- gamma =--------------
- 3 2
- 8*v
- - 3
- gamma =------
- 1 2
- 8*v
- delta
- 2
- - 3*(u + y)
- =----------------------------------------------------------------------------
- 4 3 2 2 2 3 2 2 4
- 2*(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y + y )
- delta
- 1
- 3
- =----------------------------------------------------------------------------
- 4 3 2 2 2 3 2 2 4
- 2*(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y + y )
- v =u + y
- 3
- x =u + y
- 2
- x =-1
- 1
- New 0-form conditions detected
- 3 2 2
- - 8*gamma *v + 6*u + 12*u*y - 3*v + 6*y
- 3 3
- -----------------------------------------------
- 3
- 8*v
- 3*(x - 1)
- 2 3
- --------------
- 2
- 8*v
- 3
- - 8*gamma *v + 3*x *v + 6*u + 6*y
- 1 3 1 3
- -----------------------------------------
- 3
- 8*v
- 3
- - 4*gamma *v + 3*u + 3*y
- 1 3
- ------------------------------
- 3
- 4*v
- 3
- - 4*gamma *v + 3
- 1 1
- ----------------------
- 3
- 4*v
- 3*(x - 1)
- 2 3
- ----------------------------------------------------------------------------
- 4 3 2 2 2 3 2 2 4
- 2*(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y + y )
- 8 7 6 6 2
- ( - 2*delta *u - 16*delta *u *y + 16*delta *u *v - 56*delta *u *y
- 2 2 2 2 2 2 2 2
- 5 5 3 4 2
- + 96*delta *u *v*y - 112*delta *u *y - 48*delta *u *v
- 2 2 2 2 2 2
- 4 2 4 4 3 2
- + 240*delta *u *v*y - 140*delta *u *y - 192*delta *u *v *y
- 2 2 2 2 2 2
- 3 3 3 5 2 3
- + 320*delta *u *v*y - 112*delta *u *y + 64*delta *u *v
- 2 2 2 2 2 2
- 2 2 2 2 4 2 6
- - 288*delta *u *v *y + 240*delta *u *v*y - 56*delta *u *y
- 2 2 2 2 2 2
- 3 2 3 5
- + 128*delta *u*v *y - 192*delta *u*v *y + 96*delta *u*v*y
- 2 2 2 2 2 2
- 7 4 3 2 2 4
- - 16*delta *u*y - 32*delta *v + 64*delta *v *y - 48*delta *v *y
- 2 2 2 2 2 2 2 2
- 6 8 4 3 2 2 2
- + 16*delta *v*y - 2*delta *y + 9*u + 36*u *y - 12*u *v + 54*u *y
- 2 2 2 2
- 3 2 2 4 8 7 6
- - 24*u*v*y + 36*u*y - 12*v - 12*v*y + 9*y )/(2*(u + 8*u *y - 8*u *v
- 6 2 5 5 3 4 2 4 2 4 4
- + 28*u *y - 48*u *v*y + 56*u *y + 24*u *v - 120*u *v*y + 70*u *y
- 3 2 3 3 3 5 2 3 2 2 2
- + 96*u *v *y - 160*u *v*y + 56*u *y - 32*u *v + 144*u *v *y
- 2 4 2 6 3 2 3 5 7
- - 120*u *v*y + 28*u *y - 64*u*v *y + 96*u*v *y - 48*u*v*y + 8*u*y
- 4 3 2 2 4 6 8
- + 16*v - 32*v *y + 24*v *y - 8*v*y + y ))
- 8 7 6 6 2
- ( - delta *u - 8*delta *u *y + 8*delta *u *v - 28*delta *u *y
- 1 2 1 2 1 2 1 2
- 5 5 3 4 2
- + 48*delta *u *v*y - 56*delta *u *y - 24*delta *u *v
- 1 2 1 2 1 2
- 4 2 4 4 3 2
- + 120*delta *u *v*y - 70*delta *u *y - 96*delta *u *v *y
- 1 2 1 2 1 2
- 3 3 3 5 2 3
- + 160*delta *u *v*y - 56*delta *u *y + 32*delta *u *v
- 1 2 1 2 1 2
- 2 2 2 2 4 2 6
- - 144*delta *u *v *y + 120*delta *u *v*y - 28*delta *u *y
- 1 2 1 2 1 2
- 3 2 3 5
- + 64*delta *u*v *y - 96*delta *u*v *y + 48*delta *u*v*y
- 1 2 1 2 1 2
- 7 4 3 2 2 4
- - 8*delta *u*y - 16*delta *v + 32*delta *v *y - 24*delta *v *y
- 1 2 1 2 1 2 1 2
- 6 8 3 2 2
- + 8*delta *v*y - delta *y - 6*u - 18*u *y + 12*u*v - 18*u*y + 12*v*y
- 1 2 1 2
- 3 8 7 6 6 2 5 5 3 4 2
- - 6*y )/(u + 8*u *y - 8*u *v + 28*u *y - 48*u *v*y + 56*u *y + 24*u *v
- 4 2 4 4 3 2 3 3 3 5
- - 120*u *v*y + 70*u *y + 96*u *v *y - 160*u *v*y + 56*u *y
- 2 3 2 2 2 2 4 2 6 3
- - 32*u *v + 144*u *v *y - 120*u *v*y + 28*u *y - 64*u*v *y
- 2 3 5 7 4 3 2 2 4
- + 96*u*v *y - 48*u*v*y + 8*u*y + 16*v - 32*v *y + 24*v *y
- 6 8
- - 8*v*y + y )
- 3*x
- 1 3
- ----------------------------------------------------------------------------
- 4 3 2 2 2 3 2 2 4
- 2*(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y + y )
- 6 5 4 4 2
- ( - delta *u - 6*delta *u *y + 6*delta *u *v - 15*delta *u *y
- 1 2 1 2 1 2 1 2
- 3 3 3 2 2
- + 24*delta *u *v*y - 20*delta *u *y - 12*delta *u *v
- 1 2 1 2 1 2
- 2 2 2 4 2
- + 36*delta *u *v*y - 15*delta *u *y - 24*delta *u*v *y
- 1 2 1 2 1 2
- 3 5 3 2 2
- + 24*delta *u*v*y - 6*delta *u*y + 8*delta *v - 12*delta *v *y
- 1 2 1 2 1 2 1 2
- 4 6 6 5 4 4 2
- + 6*delta *v*y - delta *y - 6*u - 6*y)/(u + 6*u *y - 6*u *v + 15*u *y
- 1 2 1 2
- 3 3 3 2 2 2 2 2 4 2
- - 24*u *v*y + 20*u *y + 12*u *v - 36*u *v*y + 15*u *y + 24*u*v *y
- 3 5 3 2 2 4 6
- - 24*u*v*y + 6*u*y - 8*v + 12*v *y - 6*v*y + y )
- 6 5 4 4 2
- ( - delta *u - 6*delta *u *y + 6*delta *u *v - 15*delta *u *y
- 1 1 1 1 1 1 1 1
- 3 3 3 2 2
- + 24*delta *u *v*y - 20*delta *u *y - 12*delta *u *v
- 1 1 1 1 1 1
- 2 2 2 4 2
- + 36*delta *u *v*y - 15*delta *u *y - 24*delta *u*v *y
- 1 1 1 1 1 1
- 3 5 3 2 2
- + 24*delta *u*v*y - 6*delta *u*y + 8*delta *v - 12*delta *v *y
- 1 1 1 1 1 1 1 1
- 4 6 6 5 4 4 2
- + 6*delta *v*y - delta *y + 6)/(u + 6*u *y - 6*u *v + 15*u *y
- 1 1 1 1
- 3 3 3 2 2 2 2 2 4 2
- - 24*u *v*y + 20*u *y + 12*u *v - 36*u *v*y + 15*u *y + 24*u*v *y
- 3 5 3 2 2 4 6
- - 24*u*v*y + 6*u*y - 8*v + 12*v *y - 6*v*y + y )
- - v + 1
- 3 3
- - x + 1
- 2 3
- - x + 1
- 2 2
- - x
- 1 3
- - x
- 1 2
- - x
- 1 1
- Solving 0-forms
- New equations:
- 2 2
- 3*(2*u + 4*u*y - v + 2*y )
- gamma =-----------------------------
- 3 3 3
- 8*v
- 3*(u + y)
- gamma =-----------
- 1 3 3
- 4*v
- 3
- gamma =------
- 1 1 3
- 4*v
- 4 3 2 2 2 3 2
- delta =(3*(3*u + 12*u *y - 4*u *v + 18*u *y - 8*u*v*y + 12*u*y - 4*v
- 2 2
- 2 4 8 7 6 6 2 5
- - 4*v*y + 3*y ))/(2*(u + 8*u *y - 8*u *v + 28*u *y - 48*u *v*y
- 5 3 4 2 4 2 4 4 3 2
- + 56*u *y + 24*u *v - 120*u *v*y + 70*u *y + 96*u *v *y
- 3 3 3 5 2 3 2 2 2 2 4
- - 160*u *v*y + 56*u *y - 32*u *v + 144*u *v *y - 120*u *v*y
- 2 6 3 2 3 5 7 4
- + 28*u *y - 64*u*v *y + 96*u*v *y - 48*u*v*y + 8*u*y + 16*v
- 3 2 2 4 6 8
- - 32*v *y + 24*v *y - 8*v*y + y ))
- 3 2 2 3 8 7
- delta =(6*( - u - 3*u *y + 2*u*v - 3*u*y + 2*v*y - y ))/(u + 8*u *y
- 1 2
- 6 6 2 5 5 3 4 2 4 2
- - 8*u *v + 28*u *y - 48*u *v*y + 56*u *y + 24*u *v - 120*u *v*y
- 4 4 3 2 3 3 3 5 2 3
- + 70*u *y + 96*u *v *y - 160*u *v*y + 56*u *y - 32*u *v
- 2 2 2 2 4 2 6 3 2 3
- + 144*u *v *y - 120*u *v*y + 28*u *y - 64*u*v *y + 96*u*v *y
- 5 7 4 3 2 2 4 6 8
- - 48*u*v*y + 8*u*y + 16*v - 32*v *y + 24*v *y - 8*v*y + y )
- 6 5 4 4 2 3 3 3 2 2
- delta =6/(u + 6*u *y - 6*u *v + 15*u *y - 24*u *v*y + 20*u *y + 12*u *v
- 1 1
- 2 2 2 4 2 3 5 3
- - 36*u *v*y + 15*u *y + 24*u*v *y - 24*u*v*y + 6*u*y - 8*v
- 2 2 4 6
- + 12*v *y - 6*v*y + y )
- v =1
- 3 3
- x =1
- 2 3
- x =1
- 2 2
- x =0
- 1 3
- x =0
- 1 2
- x =0
- 1 1
- New 0-form conditions detected
- - v
- 3 3 3
- - x
- 2 3 3
- - x
- 2 2 3
- - x
- 2 2 2
- - x
- 1 3 3
- - x
- 1 2 3
- - x
- 1 2 2
- - x
- 1 1 3
- - x
- 1 1 2
- - x
- 1 1 1
- Solving 0-forms
- New equations:
- v =0
- 3 3 3
- x =0
- 2 3 3
- x =0
- 2 2 3
- x =0
- 2 2 2
- x =0
- 1 3 3
- x =0
- 1 2 3
- x =0
- 1 2 2
- x =0
- 1 1 3
- x =0
- 1 1 2
- x =0
- 1 1 1
- New 0-form conditions detected
- - v
- 3 3 3 3
- - x
- 2 3 3 3
- - x
- 2 2 3 3
- - x
- 2 2 2 3
- - x
- 2 2 2 2
- - x
- 1 3 3 3
- - x
- 1 2 3 3
- - x
- 1 2 2 3
- - x
- 1 2 2 2
- - x
- 1 1 3 3
- - x
- 1 1 2 3
- - x
- 1 1 2 2
- - x
- 1 1 1 3
- - x
- 1 1 1 2
- - x
- 1 1 1 1
- Solving 0-forms
- New equations:
- v =0
- 3 3 3 3
- x =0
- 2 3 3 3
- x =0
- 2 2 3 3
- x =0
- 2 2 2 3
- x =0
- 2 2 2 2
- x =0
- 1 3 3 3
- x =0
- 1 2 3 3
- x =0
- 1 2 2 3
- x =0
- 1 2 2 2
- x =0
- 1 1 3 3
- x =0
- 1 1 2 3
- x =0
- 1 1 2 2
- x =0
- 1 1 1 3
- x =0
- 1 1 1 2
- x =0
- 1 1 1 1
- New 0-form conditions detected
- - v
- 3 3 3 3 3
- - x
- 2 3 3 3 3
- 3*( - 4*f *v + f )
- 1 3 2
- ----------------------
- 2*f*v
- 2 2
- 3*(2*f *u + 4*f *u*y - 4*f *v + 2*f *y + f )
- 1 2 1 2 1 2 1 2 3
- --------------------------------------------------------
- 2 2
- f*(u + 2*u*y - 2*v + y )
- - x
- 2 2 2 2 3
- - x
- 2 2 2 2 2
- - x
- 1 3 3 3 3
- - x
- 1 2 3 3 3
- - x
- 2 2 3 3 1
- - x
- 1 2 2 2 3
- - x
- 1 2 2 2 2
- - x
- 1 1 3 3 3
- - x
- 1 1 2 3 3
- - x
- 1 1 2 2 3
- - x
- 1 1 2 2 2
- - x
- 1 1 1 3 3
- - x
- 1 1 1 2 3
- - x
- 1 1 1 2 2
- - x
- 1 1 1 1 3
- - x
- 1 1 1 1 2
- - x
- 1 1 1 1 1
- Solving 0-forms
- New equations:
- v =0
- 3 3 3 3 3
- x =0
- 2 3 3 3 3
- x =0
- 2 2 3 3 1
- x =0
- 2 2 2 2 3
- x =0
- 2 2 2 2 2
- x =0
- 1 3 3 3 3
- x =0
- 1 2 3 3 3
- x =0
- 1 2 2 2 3
- x =0
- 1 2 2 2 2
- x =0
- 1 1 3 3 3
- x =0
- 1 1 2 3 3
- x =0
- 1 1 2 2 3
- x =0
- 1 1 2 2 2
- x =0
- 1 1 1 3 3
- x =0
- 1 1 1 2 3
- x =0
- 1 1 1 2 2
- x =0
- 1 1 1 1 3
- x =0
- 1 1 1 1 2
- x =0
- 1 1 1 1 1
- f
- 2
- f =-----
- 1 3 4*v
- - f
- 3
- f =---------------------------
- 1 2 2 2
- 2*(u + 2*u*y - 2*v + y )
- New 0-form conditions detected
- - 4*f *v - 2*f *u - 2*f *y + 3*f
- 1 2 2
- -----------------------------------
- 2
- 8*v
- 2 2 2
- - 8*f *u *v - 16*f *u*v*y + 16*f *v - 8*f *v*y + 3*f
- 1 1 1 1 1 1 1 1
- -----------------------------------------------------------------
- 2 2
- 16*v*(u + 2*u*y - 2*v + y )
- 2 2 2 3 2 2 2
- ( - 8*f *u *v - 16*f *u*v *y + 16*f *v - 8*f *v *y - 2*f *u
- 1 1 3 1 1 3 1 1 3 1 1 3 2
- 2 2 2 2
- - 4*f *u*y + 4*f *v - 2*f *y - f *v)/(8*v *(u + 2*u*y - 2*v + y ))
- 2 2 2 3
- 2 2 2
- 8*f *u *v + 16*f *u*v*y - 16*f *v + 8*f *v*y - 3*f
- 1 1 1 1 1 1 1 1
- --------------------------------------------------------------
- 2 2
- 16*v*(u + 2*u*y - 2*v + y )
- 2 2
- - 2*f *u - 4*f *u*y + 4*f *v - 2*f *y + 2*f *u + 2*f *y - 3*f
- 1 1 1 1 3 3
- ----------------------------------------------------------------------------
- 4 3 2 2 2 3 2 2 4
- 2*(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y + y )
- 4 3 2 2 2 2
- ( - 8*f *u *v - 32*f *u *v*y + 32*f *u *v - 48*f *u *v*y
- 1 1 2 1 1 2 1 1 2 1 1 2
- 2 3 3 2 2
- + 64*f *u*v *y - 32*f *u*v*y - 32*f *v + 32*f *v *y
- 1 1 2 1 1 2 1 1 2 1 1 2
- 4 2 2
- - 8*f *v*y - f *u - 2*f *u*y + 2*f *v - f *y - 8*f *v)/(8*v
- 1 1 2 2 2 2 2 3
- 4 3 2 2 2 3 2 2 4
- *(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y + y ))
- Solving 0-forms
- New equations:
- 2 2 2 2
- f =(3*(2*f *u *v + 4*f *u*v*y - 4*f *v + 2*f *v*y - 2*f*u - 4*f*u*y
- 1 1 3 1 1 1 1
- 2 2
- + 3*f*v - 2*f*y ))/(16*v
- 3 2 2 3
- *(u + 3*u *y - 2*u*v + 3*u*y - 2*v*y + y ))
- 2 2 2 2
- f =(3*( - 4*f *u *v - 8*f *u*v*y + 8*f *v - 4*f *v*y - f*u - 2*f*u*y
- 1 1 2 1 1 1 1
- 2 5 4 3 3 2 2
- - 6*f*v - f*y ))/(16*v*(u + 5*u *y - 4*u *v + 10*u *y - 12*u *v*y
- 2 3 2 2 4 2 3 5
- + 10*u *y + 4*u*v - 12*u*v*y + 5*u*y + 4*v *y - 4*v*y + y ))
- 3*f
- f =-----------------------------
- 1 1 2 2
- 8*v*(u + 2*u*y - 2*v + y )
- 2 2
- 2*f *u + 4*f *u*y - 4*f *v + 2*f *y + 3*f
- 1 1 1 1
- f =---------------------------------------------
- 3 2*(u + y)
- - 4*f *v + 3*f
- 1
- f =-----------------
- 2 2*(u + y)
- New 0-form conditions detected
- 4 2 3 2 2 3 2 2 2
- ( - 8*f *u *v - 32*f *u *v *y + 32*f *u *v - 48*f *u *v *y
- 1 1 1 1 1 1 1 1 1 1 1 1
- 3 2 3 4 3 2
- + 64*f *u*v *y - 32*f *u*v *y - 32*f *v + 32*f *v *y
- 1 1 1 1 1 1 1 1 1 1 1 1
- 2 4 2 2 2 2
- - 8*f *v *y + 3*f *u *v + 6*f *u*v*y - 6*f *v + 3*f *v*y - 3*f*u
- 1 1 1 1 1 1 1
- 2 2
- - 6*f*u*y + 12*f*v - 3*f*y )/(8*v
- 4 3 2 2 2 3 2 2 4
- *(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y + y ))
- Solving 0-forms
- New equations:
- f
- 1 1 1
- 2 2 2 2 2
- 3*(f *u *v + 2*f *u*v*y - 2*f *v + f *v*y - f*u - 2*f*u*y + 4*f*v - f*y )
- 1 1 1 1
- =-------------------------------------------------------------------------------
- 2 4 3 2 2 2 3 2 2 4
- 8*v *(u + 4*u *y - 4*u *v + 6*u *y - 8*u*v*y + 4*u*y + 4*v - 4*v*y + y )
- 4*f *v - 3*f
- 1 1 2
- EDS({d f - f *omega + --------------*omega
- 1 2*(u + y)
- 2 2
- - 2*f *u - 4*f *u*y + 4*f *v - 2*f *y - 3*f
- 1 1 1 1 3
- + ------------------------------------------------*omega ,
- 2*(u + y)
- 3*f 1
- d f - -----------------------------*omega
- 1 2 2
- 8*v*(u + 2*u*y - 2*v + y )
- 2 2
- 2*f *u + 4*f *u*y - 4*f *v + 2*f *y + 3*f
- 1 1 1 1 2
- + -----------------------------------------------*omega
- 3 2 2 3
- 4*(u + 3*u *y - 2*u*v + 3*u*y - 2*v*y + y )
- 4*f *v - 3*f
- 1 3 1 2 3
- + --------------*omega },omega ^omega ^omega )
- 8*v*(u + y)
- characters ws;
- {0,0,0}
- clear v(i),omega(i);
- clear F,x,Delta,gamma,v,y,u,omega;
- off ranpos;
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Isometric embeddings of Ricci-flat R(4) in ISO(10) %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Determine the Cartan characters of a Ricci-flat embedding of R(4) into
- % the orthonormal frame bundle ISO(10) over flat R(6). Reference:
- % Estabrook & Wahlquist, Class Quant Grav 10(1993)1851
- % Indices
- indexrange {p,q,r,s}={1,2,3,4,5,6,7,8,9,10},
- {i,j,k,l}={1,2,3,4},{a,b,c,d}={5,6,7,8,9,10};
- % Metric for R10
- pform g(p,q)=0;
- g(p,q) := 0$
- g(-p,-q) := 0$
- g(-p,-p) := g(p,p) := 1$
- % Hodge map for R4
- pform epsilon(i,j,k,l)=0;
- index_symmetries epsilon(i,j,k,l):antisymmetric;
- epsilon(1,2,3,4) := 1;
- 1 2 3 4
- epsilon := 1
- % Coframe for ISO(10)
- % NB index_symmetries must come after o(p,-q) := ... (EXCALC bug)
- pform e(r)=1,o(r,s)=1;
- korder index_expand {e(r)};
- e(-p) := g(-p,-q)*e(q)$
- o(p,-q) := o(p,r)*g(-r,-q)$
- index_symmetries o(p,q):antisymmetric;
- % Structure equations
- flat_no_torsion := {d e(p) => -o(p,-q)^e(q),
- d o(p,q) => -o(p,-r)^o(r,q)};
- p p q
- flat_no_torsion := {d e => - o ^e ,
- q
- p q p r q
- d o => - o ^o }
- r
- % Coframing structure
- ISO := coframing({e(p),o(p,q)},flat_no_torsion)$
- dim ISO;
- 55
- % 4d curvature 2-forms
- pform F(i,j)=2;
- index_symmetries F(i,j):antisymmetric;
- F(-i,-j) := -g(-i,-k)*o(k,-a)^o(a,-j);
- 1 10 2 10 1 5 2 5 1 6 2 6 1 7 2 7 1 8 2 8 1 9 2 9
- f := o ^o + o ^o + o ^o + o ^o + o ^o + o ^o
- 1 2
- 1 10 3 10 1 5 3 5 1 6 3 6 1 7 3 7 1 8 3 8 1 9 3 9
- f := o ^o + o ^o + o ^o + o ^o + o ^o + o ^o
- 1 3
- 2 10 3 10 2 5 3 5 2 6 3 6 2 7 3 7 2 8 3 8 2 9 3 9
- f := o ^o + o ^o + o ^o + o ^o + o ^o + o ^o
- 2 3
- 1 10 4 10 1 5 4 5 1 6 4 6 1 7 4 7 1 8 4 8 1 9 4 9
- f := o ^o + o ^o + o ^o + o ^o + o ^o + o ^o
- 1 4
- 2 10 4 10 2 5 4 5 2 6 4 6 2 7 4 7 2 8 4 8 2 9 4 9
- f := o ^o + o ^o + o ^o + o ^o + o ^o + o ^o
- 2 4
- 3 10 4 10 3 5 4 5 3 6 4 6 3 7 4 7 3 8 4 8 3 9 4 9
- f := o ^o + o ^o + o ^o + o ^o + o ^o + o ^o
- 3 4
- % EDS for vacuum GR (Ricci-flat) in 4d
- GR0 := eds({e(a),epsilon(i,j,k,l)*F(-j,-k)^e(-l)},
- {e(i)},
- ISO)$
- % Find an integral element, and linearise
- Z := integral_element GR0$
- 45 free variables
- 39 free variables
- 29 free variables
- 21 free variables
- GRZ := linearise(GR0,Z)$
- % This actually tells us the characters already:
- % {45-39,39-29,29-21,21} = {6,10,8,21}
- % Get the characters and dimension at Z
- characters GRZ;
- Cauchy characteristics detected from characters
- {6,10,8,21}
- dim_grassmann_variety GRZ;
- 134
- % 6+2*10+3*8+4*21 = 134, so involutive
- clear e(r),o(r,s),g(p,q),epsilon(i,j,k,l),F(i,j);
- clear e,o,g,epsilon,F,Z;
- indexrange 0;
- %%%%%%%%%%%%%%%%%%%%%%%%%%
- % Janet's PDE system %
- %%%%%%%%%%%%%%%%%%%%%%%%%%
- % This is something of a standard test problem in analysing integrability
- % conditions. Although it looks very innocent, it must be prolonged five
- % times from the second jet bundle before reaching involution. The initial
- % equations are just
- %
- % u =w, u =u *y + v
- % y y z z x x
- load sets;
- off varopt;
- pform {x,y,z,u,v,w}=0$
- janet := contact(2,{x,y,z},{u,v,w})$
- janet := pullback(janet,{u(-y,-y)=w,u(-z,-z)=y*u(-x,-x)+v})$
- % Prolong to involution
- involutive janet;
- 0
- involution janet;
- Prolongation using new equations:
- u =u *y + u + v
- y z z x x y x x y
- u =w
- y y z z
- u =u *y + v
- x z z x x x x
- u =w
- x y y x
- Reduction using new equations:
- - v - w *y + w
- y y x x z z
- u =-------------------------
- x x y 2
- Reduction using new equations:
- w =v + w *y + 3*w
- y z z y y y x x y x x
- Prolongation using new equations:
- w =v + w *y + 3*w
- y z z z y y y z x x y z x x z
- w =v + w *y + 4*w
- y y z z y y y y x x y y x x y
- w =v + w *y + 3*w
- x y z z x y y y x x x y x x x
- 2
- 2*u - v *y + 2*v - w *y + w *y
- x x x x y y x y x x x x z z
- u =-----------------------------------------------------
- x y z z 2
- u =w
- x y y z x z
- u =u *y + v
- x x z z x x x x x x
- - v - w *y + w
- y y z x x z z z z
- u =-------------------------------
- x x y z 2
- - v - w *y + w
- x y y x x x x z z
- u =-------------------------------
- x x x y 2
- Reduction using new equations:
- w
- z z z z
- 2
- =2*u - v *y + 2*v + v - w *y + 2*w *y
- x x x x x x y y x x y y y z z x x x x x x z z
- EDS({d u - u *d x - u *d y - u *d z,
- x y z
- d v - v *d x - v *d y - v *d z,
- x y z
- d w - w *d x - w *d y - w *d z,
- x y z
- d u - u *d x - u *d y - u *d z,
- x x x x y x z
- d u - u *d x - w*d y - u *d z,
- y x y y z
- d u - u *d x - u *d y - (u *y + v)*d z,
- z x z y z x x
- d v - v *d x - v *d y - v *d z,
- x x x x y x z
- d v - v *d x - v *d y - v *d z,
- y x y y y y z
- d v - v *d x - v *d y - v *d z,
- z x z y z z z
- d w - w *d x - w *d y - w *d z,
- x x x x y x z
- d w - w *d x - w *d y - w *d z,
- y x y y y y z
- d w - w *d x - w *d y - w *d z,
- z x z y z z z
- v + w *y - w
- y y x x z z
- d u - u *d x + ----------------------*d y - u *d z,
- x x x x x 2 x x z
- v + w *y - w
- y y x x z z
- d u + ----------------------*d x - w *d y - u *d z,
- x y 2 x x y z
- d u - u *d x - u *d y - (u *y + v )*d z,
- x z x x z x y z x x x x
- d u - u *d x - w *d y
- y z x y z z
- 2
- - 2*u + v *y - 2*v + w *y - w *y
- x x y y y x x z z
- + ----------------------------------------------*d z,
- 2
- d v - v *d x - v *d y - v *d z,
- x x x x x x x y x x z
- d v - v *d x - v *d y - v *d z,
- x y x x y x y y x y z
- d v - v *d x - v *d y - v *d z,
- x z x x z x y z x z z
- d v - v *d x - v *d y - v *d z,
- y y x y y y y y y y z
- d v - v *d x - v *d y - v *d z,
- y z x y z y y z y z z
- d v - v *d x - v *d y - v *d z,
- z z x z z y z z z z z
- d w - w *d x - w *d y - w *d z,
- x x x x x x x y x x z
- d w - w *d x - w *d y - w *d z,
- x y x x y x y y x y z
- d w - w *d x - w *d y - w *d z,
- x z x x z x y z x z z
- d w - w *d x - w *d y - w *d z,
- y y x y y y y y y y z
- d w - w *d x - w *d y + ( - v - w *y - 3*w )*d z,
- y z x y z y y z y y y x x y x x
- d w - w *d x + ( - v - w *y - 3*w )*d y - w *d z,
- z z x z z y y y x x y x x z z z
- v + w *y - w
- x y y x x x x z z
- d u - u *d x + ----------------------------*d y - u *d z,
- x x x x x x x 2 x x x z
- v + w *y - w
- y y z x x z z z z
- d u - u *d x + ----------------------------*d y
- x x z x x x z 2
- - (u *y + v )*d z,
- x x x x x x
- v + w *y - w
- y y z x x z z z z
- d u + ----------------------------*d x - w *d y
- x y z 2 x z
- 2
- - 2*u + v *y - 2*v + w *y - w *y
- x x x x y y x y x x x x z z
- + --------------------------------------------------------*d z,
- 2
- d v - v *d x - v *d y - v *d z,
- x x x x x x x x x x y x x x z
- d v - v *d x - v *d y - v *d z,
- x x y x x x y x x y y x x y z
- d v - v *d x - v *d y - v *d z,
- x x z x x x z x x y z x x z z
- d v - v *d x - v *d y - v *d z,
- x y y x x y y x y y y x y y z
- d v - v *d x - v *d y - v *d z,
- x y z x x y z x y y z x y z z
- d v - v *d x - v *d y - v *d z,
- x z z x x z z x y z z x z z z
- d v - v *d x - v *d y - v *d z,
- y y y x y y y y y y y y y y z
- d v - v *d x - v *d y - v *d z,
- y y z x y y z y y y z y y z z
- d v - v *d x - v *d y - v *d z,
- y z z x y z z y y z z y z z z
- d v - v *d x - v *d y - v *d z,
- z z z x z z z y z z z z z z z
- d w - w *d x - w *d y - w *d z,
- x x x x x x x x x x y x x x z
- d w - w *d x - w *d y - w *d z,
- x x y x x x y x x y y x x y z
- d w - w *d x - w *d y - w *d z,
- x x z x x x z x x y z x x z z
- d w - w *d x - w *d y - w *d z,
- x y y x x y y x y y y x y y z
- d w - w *d x - w *d y
- x y z x x y z x y y z
- + ( - v - w *y - 3*w )*d z,
- x y y y x x x y x x x
- d w - w *d x + ( - v - w *y - 3*w )*d y
- x z z x x z z x y y y x x x y x x x
- - w *d z,
- x z z z
- d w - w *d x - w *d y - w *d z,
- y y y x y y y y y y y y y y z
- d w - w *d x - w *d y
- y y z x y y z y y y z
- + ( - v - w *y - 4*w )*d z,
- y y y y x x y y x x y
- d w - w *d x + ( - v - w *y - 3*w )*d y + (
- z z z x z z z y y y z x x y z x x z
- 2
- - 2*u + v *y - 2*v - v + w *y
- x x x x x x y y x x y y y z z x x x x
- - 2*w *y)*d z,
- x x z z
- d u ^d x + d u ^d z
- x x x x x x x z
- - v - w *y + w
- x x y y x x x x x x z z
- + -------------------------------------*d x^d y
- 2
- v + w *y - w
- x y y z x x x z x z z z
- + ----------------------------------*d y^d z,
- 2
- 1
- d u ^d z + ---*d u ^d x
- x x x x y x x x z
- - v - w *y + w v
- x y y z x x x z x z z z x x x
- + -------------------------------------*d x^d y + --------*d x^d z
- 2*y y
- v + w *y - w
- x x y y x x x x x x z z
- + ----------------------------------*d y^d z,
- 2
- y 1
- d u ^d z - ---*d v ^d z + ---*d v ^d y
- x x x x 2 x x y y 2 y y y z
- 2
- 1 y y
- + ---*d v ^d z - ----*d w ^d z + ---*d w ^d y
- 2 y y z z 2 x x x x 2 x x y z
- 3*w
- 1 x x x z
- + y*d w ^d z + ---*d w ^d x + ------------*d x^d y
- x x z z 2 x z z z 2
- v - 2*w *y - w
- x x y y x x x x x x z z
- + v *d x^d z + ------------------------------------*d y^d z,
- x x x y 2
- d v ^d x + d v ^d y + d v ^d z,
- x x x x x x x y x x x z
- d v ^d x + d v ^d y + d v ^d z,
- x x x y x x y y x x y z
- d v ^d x + d v ^d y + d v ^d z,
- x x x z x x y z x x z z
- d v ^d x + d v ^d y + d v ^d z,
- x x y y x y y y x y y z
- d v ^d x + d v ^d y + d v ^d z,
- x x y z x y y z x y z z
- d v ^d x + d v ^d y + d v ^d z,
- x x z z x y z z x z z z
- d v ^d x + d v ^d y + d v ^d z,
- x y y y y y y y y y y z
- d v ^d y + y*d w ^d y + d w ^d x + d w ^d z
- x y y y x x x y x x z z x z z z
- + 3*w *d x^d y - 3*w *d y^d z,
- x x x x x x x z
- d v ^d z + y*d w ^d z + d w ^d x + d w ^d y
- x y y y x x x y x x y z x y y z
- + 3*w *d x^d z + 4*w *d y^d z,
- x x x x x x x y
- d v ^d x + d v ^d y + d v ^d z,
- x y y z y y y z y y z z
- d v ^d x + d v ^d y + d v ^d z,
- x y z z y y z z y z z z
- d v ^d x + d v ^d y + d v ^d z,
- x z z z y z z z z z z z
- d v ^d z + y*d w ^d z + d w ^d x + d w ^d y
- y y y y x x y y x y y z y y y z
- + 4*w *d x^d z + 5*w *d y^d z,
- x x x y x x y y
- d w ^d x + d w ^d y + d w ^d z,
- x x x x x x x y x x x z
- d w ^d x + d w ^d y + d w ^d z,
- x x x y x x y y x x y z
- d w ^d x + d w ^d y + d w ^d z,
- x x x z x x y z x x z z
- d w ^d x + d w ^d y + d w ^d z,
- x x y y x y y y x y y z
- d w ^d x + d w ^d y + d w ^d z},d x^d y^d z)
- x y y y y y y y y y y z
- involutive ws;
- 1
- % Solve the homogeneous system, for which the
- % involutive prolongation is completely integrable
- fdomain u=u(x,y,z),v=v(x,y,z),w=w(x,y,z);
- janet := {@(u,y,y)=0,@(u,z,z)=y*@(u,x,x)};
- janet := {@ u=0,@ u=@ u*y}
- y y z z x x
- janet := involution pde2eds janet$
- Prolongation using new equations:
- u =u *y + u
- y z z x x y x x
- u =0
- y y z
- u =u *y
- x z z x x x
- u =0
- x y y
- Reduction using new equations:
- u =0
- x x y
- Prolongation using new equations:
- u =u
- x y z z x x x
- u =0
- x y y z
- u =u *y
- x x z z x x x x
- u =0
- x x y z
- u =0
- x x x y
- Reduction using new equations:
- u =0
- x x x x
- Prolongation using new equations:
- u =0
- x x x z z
- u =0
- x x x y z
- u =0
- x x x x z
- % Check if completely integrable
- if frobenius janet then write "yes" else write "no";
- yes
- length one_forms janet;
- 12
- % So there are 12 constants in the solution: there should be 12 invariants
- length(C := invariants janet);
- 12
- solve(for i:=1:length C collect
- part(C,i) = mkid(k,i),coordinates janet \ {x,y,z})$
- S := select(lhs ~q = u,first ws);
- 3 2 3 3
- s := {u=(k1*x + 3*k1*x*y*z - 6*k10*y*z - 6*k11 - 6*k12*z - k2*x *z - k2*x*y*z
- 2 3 2
- - 6*k3*x*y*z - 6*k4*x*y - 3*k5*x *z - k5*y*z - 6*k6*x*z - 3*k7*x
- 2
- - 3*k7*y*z - 6*k8*x - 6*k9*y)/6}
- % Check solution
- mkdepend dependencies;
- sub(S,{@(u,y,y),@(u,z,z)-y*@(u,x,x)});
- {0,0}
- clear u(i,j),v(i,j),w(i,j),u(i),v(i),w(i);
- clear x,y,z,u,v,w,C,S;
- end;
- Time for test: 5850 ms, plus GC time: 170 ms
|