123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- module definte;
- algebraic <<
- laplace2_rules :=
- { laplace2(1/~x,~f1,~x) => int(1/x*f1*e^(-s*x),x,0,infinity),
- laplace2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*e^(-s*x),x,0,infinity),
- laplace2(1/sqrt(~x),~f1,~x)=> int(1/sqrt(x)*f1*e^(-s*x),x,0,infinity),
- laplace2(1/(sqrt(~x)*~x),~f1,~x) =>
- int(1/(sqrt(x)*x)*f1*e^(-s*x),x,0,infinity),
- laplace2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
- int(1/(sqrt(x)*x^a)*f1*e^(-s*x),x,0,infinity),
- laplace2(~x^~a,~f1,~x) => int(x^a*f1*e^(-s*x),x,0,infinity),
- laplace2(~x,~f1,~x) => int(x*f1*e^(-s*x),x,0,infinity),
- laplace2(sqrt(~x),~f1,~x) => int(sqrt(x)*f1*e^(-s*x),x,0,infinity),
- laplace2(sqrt(~x)*~x,~f1,~x)=>int(sqrt(x)*x*f1*e^(-s*x),x,0,infinity),
- laplace2(sqrt(~x)*~x^~a,~f1,~x) =>
- int(sqrt(x)*x^a*f1*e^(-s*x),x,0,infinity),
- laplace2(~b,~f1,~x) => int(b*f1*e^(-s*x),x,0,infinity),
- laplace2(~f1,~x) => int(f1*e^(-s*x),x,0,infinity)
- };
- let laplace2_rules;
- hankel2_rules :=
- { hankel2(1/~x,~f1,~x) =>
- int(1/x*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(1/~x^(~a),~f1,~x) =>
- int(1/x^a*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(1/sqrt(~x),~f1,~x) =>
- int(1/sqrt(x)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(1/(sqrt(~x)*~x),~f1,~x) =>
- int(1/(sqrt(x)*x)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
- int(1/(sqrt(x)*x^a)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(~x^~a,~f1,~x) =>
- int(x^a*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(~x,~f1,~x) => int(x*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(sqrt(~x),~f1,~x) =>
- int(sqrt(x)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(sqrt(~x)*~x,~f1,~x) =>
- int(sqrt(x)*x,f1,besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(sqrt(~x)*~x^~a,~f1,~x) =>
- int(sqrt(x)*x^a*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(~b,~f1,~x) => int(b*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
- hankel2(~f1,~x) => int(f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity)
- };
- let hankel2_rules;
- Y_transform2_rules :=
- { Y_transform2(1/~x,~f1,~x) =>
- int(1/x*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(1/~x^(~a),~f1,~x) =>
- int(1/x^a*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(1/sqrt(~x),~f1,~x) =>
- int(1/sqrt(x)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(1/(sqrt(~x)*~x),~f1,~x) =>
- int(1/(sqrt(x)*x)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
- int(1/(sqrt(x)*x^a)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(~x^~a,~f1,~x) =>
- int(x^a*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(~x,~f1,~x) =>
- int(x*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(sqrt(~x),~f1,~x) =>
- int(sqrt(x)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(sqrt(~x)*~x,~f1,~x) =>
- int(sqrt(x)*x*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(sqrt(~x)*~x^~a,~f1,~x) =>
- int(sqrt(x)*x^a*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(~b,~f1,~x) =>
- int(b*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
- Y_transform2(~f1,~x) => int(f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity)
- };
- let Y_transform2_rules;
- K_transform2_rules :=
- { K_transform2(1/~x,~f1,~x) =>
- int(1/x*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(1/~x^(~a),~f1,~x) =>
- int(1/x^a*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(1/sqrt(~x),~f1,~x) =>
- int(1/sqrt(x)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(1/(sqrt(~x)*~x),~f1,~x) =>
- int(1/(sqrt(x)*x)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
- int(1/(sqrt(x)*x^a)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(~x^~a,~f1,~x) =>
- int(x^a*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(~x,~f1,~x) =>
- int(x*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(sqrt(~x),~f1,~x) =>
- int(sqrt(x)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(sqrt(~x)*~x,~f1,~x) =>
- int(sqrt(x)*x*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(sqrt(~x)*~x^~a,~f1,~x) =>
- int(sqrt(x)*x^a*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(~b,~f1,~x) =>
- int(b*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
- K_transform2(~f1,~x) => int(f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity)
- };
- let K_transform2_rules;
- struveh2_rules :=
- { struveh2(1/~x,~f1,~x) =>
- int(1/x*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(1/~x^(~a),~f1,~x) =>
- int(1/x^a*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(1/sqrt(~x),~f1,~x) =>
- int(1/sqrt(x)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(1/(sqrt(~x)*~x),~f1,~x) =>
- int(1/(sqrt(x)*x)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
- int(1/(sqrt(x)*x^a)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(~x^~a,~f1,~x) =>
- int(x^a*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(~x,~f1,~x) =>
- int(x*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(sqrt(~x),~f1,~x) =>
- int(sqrt(x)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(sqrt(~x)*~x,~f1,~x) =>
- int(sqrt(x)*x*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(sqrt(~x)*~x^~a,~f1,~x) =>
- int(sqrt(x)*x^a*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(~b,~f1,~x) =>
- int(b*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
- struveh2(~f1,~x) => int(f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity)
- };
- let struveh2_rules;
- fourier_sin2_rules :=
- { fourier_sin2(1/~x,~f1,~x) => int(1/x*f1*sin(s*x),x,0,infinity),
- fourier_sin2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*sin(s*x),x,0,infinity),
- fourier_sin2(1/sqrt(~x),~f1,~x) =>
- int(1/sqrt(x)*f1*sin(s*x),x,0,infinity),
- fourier_sin2(1/(sqrt(~x)*~x),~f1,~x) =>
- int(1/(sqrt(x)*x)*f1*sin(s*x),x,0,infinity),
- fourier_sin2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
- int(1/(sqrt(x)*x^a)*f1*sin(s*x),x,0,infinity),
- fourier_sin2(~x^~a,~f1,~x) => int(x^a*f1*sin(s*x),x,0,infinity),
- fourier_sin2(~x,~f1,~x) => int(x*f1*sin(s*x),x,0,infinity),
- fourier_sin2(sqrt(~x),~f1,~x)=> int(sqrt(x)*f1*sin(s*x),x,0,infinity),
- fourier_sin2(sqrt(~x)*~x,~f1,~x) =>
- int(sqrt(x)*x*f1*sin(s*x),x,0,infinity),
- fourier_sin2(sqrt(~x)*~x^~a,~f1,~x) =>
- int(sqrt(x)*x^a*f1*sin(s*x),x,0,infinity),
- fourier_sin2(~b,~f1,~x) => int(b*f1*sin(s*x),x,0,infinity),
- fourier_sin2(~f1,~x) => int(f1*sin(s*x),x,0,infinity)
- };
- let fourier_sin2_rules;
- fourier_cos2_rules :=
- { fourier_cos2(1/~x,~f1,~x) => int(1/x*f1*cos(s*x),x,0,infinity),
- fourier_cos2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*cos(s*x),x,0,infinity),
- fourier_cos2(1/sqrt(~x),~f1,~x) =>
- int(1/sqrt(x)*f1*cos(s*x),x,0,infinity),
- fourier_cos2(1/(sqrt(~x)*~x),~f1,~x) =>
- int(1/(sqrt(x)*x)*f1*cos(s*x),x,0,infinity),
- fourier_cos2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
- int(1/(sqrt(x)*x^a)*f1*cos(s*x),x,0,infinity),
- fourier_cos2(~x^~a,~f1,~x) => int(x^a*f1*cos(s*x),x,0,infinity),
- fourier_cos2(~x,~f1,~x) => int(x*f1*cos(s*x),x,0,infinity),
- fourier_cos2(sqrt(~x),~f1,~x)=> int(sqrt(x)*f1*cos(s*x),x,0,infinity),
- fourier_cos2(sqrt(~x)*~x,~f1,~x) =>
- int(sqrt(x)*x*f1*cos(s*x),x,0,infinity),
- fourier_cos2(sqrt(~x)*~x^~a,~f1,~x) =>
- int(sqrt(x)*x^a*f1*cos(s*x),x,0,infinity),
- fourier_cos2(~b,~f1,~x) => int(b*f1*cos(s*x),x,0,infinity),
- fourier_cos2(~f1,~x) => int(f1*cos(s*x),x,0,infinity)
- };
- let fourier_cos2_rules;
- >>;
- endmodule;
- end;
|