definte.red 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. module definte;
  2. algebraic <<
  3. laplace2_rules :=
  4. { laplace2(1/~x,~f1,~x) => int(1/x*f1*e^(-s*x),x,0,infinity),
  5. laplace2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*e^(-s*x),x,0,infinity),
  6. laplace2(1/sqrt(~x),~f1,~x)=> int(1/sqrt(x)*f1*e^(-s*x),x,0,infinity),
  7. laplace2(1/(sqrt(~x)*~x),~f1,~x) =>
  8. int(1/(sqrt(x)*x)*f1*e^(-s*x),x,0,infinity),
  9. laplace2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
  10. int(1/(sqrt(x)*x^a)*f1*e^(-s*x),x,0,infinity),
  11. laplace2(~x^~a,~f1,~x) => int(x^a*f1*e^(-s*x),x,0,infinity),
  12. laplace2(~x,~f1,~x) => int(x*f1*e^(-s*x),x,0,infinity),
  13. laplace2(sqrt(~x),~f1,~x) => int(sqrt(x)*f1*e^(-s*x),x,0,infinity),
  14. laplace2(sqrt(~x)*~x,~f1,~x)=>int(sqrt(x)*x*f1*e^(-s*x),x,0,infinity),
  15. laplace2(sqrt(~x)*~x^~a,~f1,~x) =>
  16. int(sqrt(x)*x^a*f1*e^(-s*x),x,0,infinity),
  17. laplace2(~b,~f1,~x) => int(b*f1*e^(-s*x),x,0,infinity),
  18. laplace2(~f1,~x) => int(f1*e^(-s*x),x,0,infinity)
  19. };
  20. let laplace2_rules;
  21. hankel2_rules :=
  22. { hankel2(1/~x,~f1,~x) =>
  23. int(1/x*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  24. hankel2(1/~x^(~a),~f1,~x) =>
  25. int(1/x^a*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  26. hankel2(1/sqrt(~x),~f1,~x) =>
  27. int(1/sqrt(x)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  28. hankel2(1/(sqrt(~x)*~x),~f1,~x) =>
  29. int(1/(sqrt(x)*x)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  30. hankel2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
  31. int(1/(sqrt(x)*x^a)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  32. hankel2(~x^~a,~f1,~x) =>
  33. int(x^a*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  34. hankel2(~x,~f1,~x) => int(x*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  35. hankel2(sqrt(~x),~f1,~x) =>
  36. int(sqrt(x)*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  37. hankel2(sqrt(~x)*~x,~f1,~x) =>
  38. int(sqrt(x)*x,f1,besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  39. hankel2(sqrt(~x)*~x^~a,~f1,~x) =>
  40. int(sqrt(x)*x^a*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  41. hankel2(~b,~f1,~x) => int(b*f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity),
  42. hankel2(~f1,~x) => int(f1*besselj(n,2*(s*x)^(1/2)),x,0,infinity)
  43. };
  44. let hankel2_rules;
  45. Y_transform2_rules :=
  46. { Y_transform2(1/~x,~f1,~x) =>
  47. int(1/x*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  48. Y_transform2(1/~x^(~a),~f1,~x) =>
  49. int(1/x^a*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  50. Y_transform2(1/sqrt(~x),~f1,~x) =>
  51. int(1/sqrt(x)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  52. Y_transform2(1/(sqrt(~x)*~x),~f1,~x) =>
  53. int(1/(sqrt(x)*x)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  54. Y_transform2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
  55. int(1/(sqrt(x)*x^a)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  56. Y_transform2(~x^~a,~f1,~x) =>
  57. int(x^a*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  58. Y_transform2(~x,~f1,~x) =>
  59. int(x*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  60. Y_transform2(sqrt(~x),~f1,~x) =>
  61. int(sqrt(x)*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  62. Y_transform2(sqrt(~x)*~x,~f1,~x) =>
  63. int(sqrt(x)*x*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  64. Y_transform2(sqrt(~x)*~x^~a,~f1,~x) =>
  65. int(sqrt(x)*x^a*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  66. Y_transform2(~b,~f1,~x) =>
  67. int(b*f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity),
  68. Y_transform2(~f1,~x) => int(f1*bessely(n,2*(s*x)^(1/2)),x,0,infinity)
  69. };
  70. let Y_transform2_rules;
  71. K_transform2_rules :=
  72. { K_transform2(1/~x,~f1,~x) =>
  73. int(1/x*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  74. K_transform2(1/~x^(~a),~f1,~x) =>
  75. int(1/x^a*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  76. K_transform2(1/sqrt(~x),~f1,~x) =>
  77. int(1/sqrt(x)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  78. K_transform2(1/(sqrt(~x)*~x),~f1,~x) =>
  79. int(1/(sqrt(x)*x)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  80. K_transform2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
  81. int(1/(sqrt(x)*x^a)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  82. K_transform2(~x^~a,~f1,~x) =>
  83. int(x^a*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  84. K_transform2(~x,~f1,~x) =>
  85. int(x*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  86. K_transform2(sqrt(~x),~f1,~x) =>
  87. int(sqrt(x)*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  88. K_transform2(sqrt(~x)*~x,~f1,~x) =>
  89. int(sqrt(x)*x*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  90. K_transform2(sqrt(~x)*~x^~a,~f1,~x) =>
  91. int(sqrt(x)*x^a*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  92. K_transform2(~b,~f1,~x) =>
  93. int(b*f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity),
  94. K_transform2(~f1,~x) => int(f1*besselK(n,2*(s*x)^(1/2)),x,0,infinity)
  95. };
  96. let K_transform2_rules;
  97. struveh2_rules :=
  98. { struveh2(1/~x,~f1,~x) =>
  99. int(1/x*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  100. struveh2(1/~x^(~a),~f1,~x) =>
  101. int(1/x^a*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  102. struveh2(1/sqrt(~x),~f1,~x) =>
  103. int(1/sqrt(x)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  104. struveh2(1/(sqrt(~x)*~x),~f1,~x) =>
  105. int(1/(sqrt(x)*x)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  106. struveh2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
  107. int(1/(sqrt(x)*x^a)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  108. struveh2(~x^~a,~f1,~x) =>
  109. int(x^a*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  110. struveh2(~x,~f1,~x) =>
  111. int(x*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  112. struveh2(sqrt(~x),~f1,~x) =>
  113. int(sqrt(x)*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  114. struveh2(sqrt(~x)*~x,~f1,~x) =>
  115. int(sqrt(x)*x*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  116. struveh2(sqrt(~x)*~x^~a,~f1,~x) =>
  117. int(sqrt(x)*x^a*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  118. struveh2(~b,~f1,~x) =>
  119. int(b*f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity),
  120. struveh2(~f1,~x) => int(f1*struveh(n,2*(s*x)^(1/2)),x,0,infinity)
  121. };
  122. let struveh2_rules;
  123. fourier_sin2_rules :=
  124. { fourier_sin2(1/~x,~f1,~x) => int(1/x*f1*sin(s*x),x,0,infinity),
  125. fourier_sin2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*sin(s*x),x,0,infinity),
  126. fourier_sin2(1/sqrt(~x),~f1,~x) =>
  127. int(1/sqrt(x)*f1*sin(s*x),x,0,infinity),
  128. fourier_sin2(1/(sqrt(~x)*~x),~f1,~x) =>
  129. int(1/(sqrt(x)*x)*f1*sin(s*x),x,0,infinity),
  130. fourier_sin2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
  131. int(1/(sqrt(x)*x^a)*f1*sin(s*x),x,0,infinity),
  132. fourier_sin2(~x^~a,~f1,~x) => int(x^a*f1*sin(s*x),x,0,infinity),
  133. fourier_sin2(~x,~f1,~x) => int(x*f1*sin(s*x),x,0,infinity),
  134. fourier_sin2(sqrt(~x),~f1,~x)=> int(sqrt(x)*f1*sin(s*x),x,0,infinity),
  135. fourier_sin2(sqrt(~x)*~x,~f1,~x) =>
  136. int(sqrt(x)*x*f1*sin(s*x),x,0,infinity),
  137. fourier_sin2(sqrt(~x)*~x^~a,~f1,~x) =>
  138. int(sqrt(x)*x^a*f1*sin(s*x),x,0,infinity),
  139. fourier_sin2(~b,~f1,~x) => int(b*f1*sin(s*x),x,0,infinity),
  140. fourier_sin2(~f1,~x) => int(f1*sin(s*x),x,0,infinity)
  141. };
  142. let fourier_sin2_rules;
  143. fourier_cos2_rules :=
  144. { fourier_cos2(1/~x,~f1,~x) => int(1/x*f1*cos(s*x),x,0,infinity),
  145. fourier_cos2(1/~x^(~a),~f1,~x) => int(1/x^a*f1*cos(s*x),x,0,infinity),
  146. fourier_cos2(1/sqrt(~x),~f1,~x) =>
  147. int(1/sqrt(x)*f1*cos(s*x),x,0,infinity),
  148. fourier_cos2(1/(sqrt(~x)*~x),~f1,~x) =>
  149. int(1/(sqrt(x)*x)*f1*cos(s*x),x,0,infinity),
  150. fourier_cos2(1/(sqrt(~x)*~x^~a),~f1,~x) =>
  151. int(1/(sqrt(x)*x^a)*f1*cos(s*x),x,0,infinity),
  152. fourier_cos2(~x^~a,~f1,~x) => int(x^a*f1*cos(s*x),x,0,infinity),
  153. fourier_cos2(~x,~f1,~x) => int(x*f1*cos(s*x),x,0,infinity),
  154. fourier_cos2(sqrt(~x),~f1,~x)=> int(sqrt(x)*f1*cos(s*x),x,0,infinity),
  155. fourier_cos2(sqrt(~x)*~x,~f1,~x) =>
  156. int(sqrt(x)*x*f1*cos(s*x),x,0,infinity),
  157. fourier_cos2(sqrt(~x)*~x^~a,~f1,~x) =>
  158. int(sqrt(x)*x^a*f1*cos(s*x),x,0,infinity),
  159. fourier_cos2(~b,~f1,~x) => int(b*f1*cos(s*x),x,0,infinity),
  160. fourier_cos2(~f1,~x) => int(f1*cos(s*x),x,0,infinity)
  161. };
  162. let fourier_cos2_rules;
  163. >>;
  164. endmodule;
  165. end;