1234567891011121314151617181920212223242526272829303132333435363738394041 |
- module transfns;
- algebraic;
- algebraic procedure trigexpand wws;
- wws where { sin(~x+~y) => sin(x)*cos(y)+cos(x)*sin(y),
- cos(~x+~y) => cos(x)*cos(y)-sin(x)*sin(y),
- sin((~n)*~x) => sin(x)*cos((n-1)*x)+cos(x)*sin((n-1)*x)
- when fixp n and n>1,
- cos((~n)*~x) => cos(x)*cos((n-1)*x)-sin(x)*sin((n-1)*x)
- when fixp n and n>1 };
- algebraic procedure hypexpand wws;
- wws where {sinh(~x+~y) => sinh(x)*cosh(y)+cosh(x)*sinh(y),
- cosh(~x+~y) => cosh(x)*cosh(y)+sinh(x)*sinh(y),
- sinh((~n)*~x) => sinh(x)*cosh((n-1)*x)+cosh(x)*sinh((n-1)*x)
- when fixp n and n>1,
- cosh((~n)*~x) => cosh(x)*cosh((n-1)*x)+sinh(x)*sinh((n-1)*x)
- when fixp n and n>1 };
- operator !#ei!&; !#ei!&(0):=1;
- trig!#ei!& := {!#ei!&(~x)**(~n) => !#ei!&(n*x),
- !#ei!&(~x)*!#ei!&(~y) => !#ei!&(x+y)};
- let trig!#ei!&;
- algebraic procedure trigreduce wws;
- <<wws:=(wws where {cos(~x) => (!#ei!&(x)+!#ei!&(-x))/2,
- sin(~x) => -i*(!#ei!&(x)-!#ei!&(-x))/2});
- wws:=(wws where {!#ei!&(~x) => cos x +i*sin x})>>;
- algebraic procedure hypreduce wws;
- <<wws:=(wws where {cosh(~x) => (!#ei!&(x)+!#ei!&(-x))/2,
- sinh(~x) => (!#ei!&(x)-!#ei!&(-x))/2});
- wws:=(wws where {!#ei!&(~x) => cosh(x)+sinh(x)})>>;
- endmodule;
- end;
|