selfgra.tst 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. %%%%%%%%%%%%%%%%%%% A. Burnel and H. Caprasse %%%%%%%%%%%%%%%%%%%%%%
  2. %
  3. % Application of CANTENS.RED
  4. % Date: 15/09/98
  5. %
  6. % Computes the gluon contribution to the gluon self-energy in the
  7. % "finite" theory
  8. % contains initially 18 terms which are reduced to 10 by cantens
  9. % in a dm-dimensional Minkowski space and 8 terms in a 4-dimensional
  10. % Minkowski space.
  11. %
  12. % *** Will look much nicer if run in the GRAPHIC mode
  13. %
  14. % LOADING CANTENS
  15. load cantens$
  16. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  17. % Structure definitions, Minkowski space X internal symmetry space
  18. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  19. off onespace; % to be allowed to work within several subspaces
  20. define_spaces wholespace={dm+di,signature=1};
  21. define_spaces mink={dm,signature=1};%,indexrange=0 .. 3};
  22. define_spaces internal={di,signature=0};%,indexrange=4 .. 11};
  23. %
  24. % Memberships of indices:
  25. mk_ids_belong_space({mu1,mu2,nu1,nu2,tau},mink);
  26. mk_ids_belong_space({a1,a2,b1,b2,c1,c2},internal);
  27. %%%%%%%%%%%%%%%%
  28. % Used Tensors %
  29. %%%%%%%%%%%%%%%%
  30. %% variables x1,x2 and xi=x1-x2,
  31. %% aa, gluon field
  32. %% dd, contracted gluon field
  33. %% which appears inside the expression
  34. %% a is the antisymmetric structure constant of SU3.
  35. %% It is called "a" to assure that it appears first
  36. %% inside REDUCE expressions and to assure that they
  37. %% factorize in front of the output expression.
  38. %
  39. tensor aa,dd,a,x1,x2,xi; % tensor declaration
  40. make_variables x1,x2,xi; % variable declaration
  41. % declare to which subspace the declared tensors belong to.
  42. make_tensor_belong_space(x1,mink);
  43. make_tensor_belong_space(x2,mink);
  44. make_tensor_belong_space(xi,mink);
  45. make_tensor_belong_space(a,internal);
  46. antisymmetric a; % antisymmetry of structure constant.
  47. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  48. % building of starting expression to be manipulated and simplified.
  49. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  50. es1:=g^2*a(a1,b1,c1)*a(a2,b2,c2);
  51. as1:=-aa(x1,nu1,-b1)*aa(x2,nu2,-b2)*df(df(dd(xi,mu1,-c1,mu2,-c2),xi(nu1)),xi(nu2))
  52. *dd(xi,-mu1,-a1,-mu2,-a2);
  53. as2:=-aa(x1,nu1,-b1)*aa(x2,nu2,-b2)*df(dd(xi,mu1,-c1,mu2,-a2),xi(nu1))
  54. *df(dd(xi,-mu1,-a1,-mu2,-c2),xi(nu2));
  55. as3:=aa(x1,nu1,-b1)*df(aa(x2,mu2,-c2),x2(nu2))*df(dd(xi,mu1,-c1,nu2,-b2),xi(nu1))
  56. *dd(xi,-mu1,-a1,-mu2,-a2);
  57. as4:=aa(x1,nu1,-b1)*df(aa(x2,mu2,-c2),x2(nu2))*df(dd(xi,mu1,-c1,-mu2,-a2),xi(nu1))
  58. *dd(xi,-mu1,-a1,nu2,-b2);
  59. as5:=-aa(x1,nu1,-b1)*aa(x2,mu2,-a2)*df(dd(xi,mu1,-c1,nu2,-b2),xi(nu1))
  60. *df(dd(xi,-mu1,-a1,-mu2,-c2),xi(nu2));
  61. as6:=-aa(x1,nu1,-b1)*aa(x2,mu2,-a2)*df(df(dd(xi,mu1,-c1,-mu2,-c2),xi(nu1)),xi(nu2))
  62. *dd(xi,-mu1,-a1,nu2,-b2);
  63. as7:=-df(aa(x1,mu1,-c1),x1(nu1))*aa(x2,nu2,-b2)*df(dd(xi,nu1,-b1,mu2,-c2),xi(nu2))
  64. *dd(xi,-mu1,-a1,-mu2,-a2);
  65. as8:=-df(aa(x1,mu1,-c1),x1(nu1))*aa(x2,nu2,-b2)*df(dd(xi,-mu1,-a1,mu2,-c2),xi(nu2))
  66. *dd(xi,nu1,-b1,-mu2,-a2);
  67. as9:=df(aa(x1,mu1,-c1),x1(nu1))*df(aa(x2,mu2,-c2),x2(nu2))*dd(xi,nu1,-b1,nu2,-b2)
  68. *dd(xi,-mu1,-a1,-mu2,-a2);
  69. as10:=df(aa(x1,mu1,-c1),x1(nu1))*df(aa(x2,mu2,-c2),x2(nu2))*dd(xi,nu1,-b1,-mu2,-a2)
  70. *dd(xi,-mu1,-a1,nu2,-b2);
  71. as11:=-df(aa(x1,mu1,-c1),x1(nu1))*aa(x2,mu2,-a2)*df(dd(xi,-mu1,-a1,-mu2,-c2),xi(nu2))
  72. *dd(xi,nu1,-b1,nu2,-b2);
  73. as12:=-df(aa(x1,mu1,-c1),x1(nu1))*aa(x2,mu2,-a2)*df(dd(xi,nu1,-b1,-mu2,-c2),xi(nu2))
  74. *dd(xi,-mu1,-a1,nu2,-b2);
  75. as13:=-aa(x1,mu1,-a1)*aa(x2,nu2,-b2)*df(dd(xi,nu1,-b1,mu2,-c2),xi(nu2))
  76. *df(dd(xi,-mu1,-c1,-mu2,-a2),xi(nu1));
  77. as14:=-aa(x1,mu1,-a1)*aa(x2,nu2,-b2)*dd(xi,nu1,-b1,mu2,-a2)
  78. *df(dd(xi,-mu1,-c1,-mu2,-c2),xi(nu1),xi(nu2));
  79. as15:=aa(x1,mu1,-a1)*df(aa(x2,mu2,-c2),x2(nu2))*dd(xi,nu1,-b1,nu2,-b2)
  80. *df(dd(xi,-mu1,-c1,-mu2,-a2),xi(nu1));
  81. as16:=aa(x1,mu1,-a1)*df(aa(x2,mu2,-c2),x2(nu2))*dd(xi,nu1,-b1,-mu2,-a2)
  82. *df(dd(xi,-mu1,-c1,nu2,-b2),xi(nu1));
  83. as17:=-aa(x1,mu1,-a1)*aa(x2,mu2,-a2)*df(dd(xi,-mu1,-c1,-mu2,-c2),xi(nu1),xi(nu2))
  84. *dd(xi,nu1,-b1,nu2,-b2);
  85. as18:=-aa(x1,mu1,-a1)*aa(x2,mu2,-a2)*df(dd(xi,-mu1,-c1,nu2,-b2),xi(nu1))
  86. *df(dd(xi,nu1,-b1,-mu2,-c2),xi(nu2));
  87. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  88. % building of the gluon contribution to gluon self-energy %
  89. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  90. es:=es1*for i:=1:18 sum mkid(as,i);
  91. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  92. % Are some terms identical ? %
  93. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  94. es:=canonical es;
  95. length es;
  96. % no simplification
  97. tensor dc; % new tensor
  98. make_tensor_belong_space(dc,mink); % belongs to Minkowski space
  99. make_partic_tens(rho,metric); % "rho" is a metric tensor
  100. make_tensor_belong_space(rho,internal); % in the internal space
  101. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  102. % rewriting rule and subsequent simplification %
  103. % dd(mu1,mu2,a,b)=>rho(a,b)*dc(mu1,mu2) %
  104. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  105. ddrule:={dd({~xi},~a,~b,~c,~d)=>rho(b,d)*dc({xi},a,c)};
  106. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  107. % simplification after application of the rule %
  108. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  109. es:=(es where ddrule);
  110. %
  111. es:=canonical es;
  112. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  113. % Particular gauge: %
  114. % case of Fermi gauge : dc(mu1,mu2)=g(mu1,mu2)*dc %
  115. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  116. make_partic_tens(delta,delta); % delta tenseur defined with name "delta"
  117. % eta tenseur introduced with name "eta":
  118. make_partic_tens(eta,eta);
  119. make_tensor_belong_space(eta,mink);
  120. % rule for the choice of gauge:
  121. dcrule:={dc({~xi},~a,~c)=>eta(a,c)*dc(xi)};
  122. % rewriting of the expression
  123. res:=(es where dcrule);
  124. % simplification
  125. res:=canonical res;
  126. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  127. % last rewriting rule: %
  128. % second derivative of dc(xi) with %
  129. % respect to xi tensor is zero %
  130. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  131. dalrule:={df(dc(xi),xi(~a),xi(-~a))=>0};
  132. res:=(res where dalrule);
  133. canonical res - res; % gives 0
  134. length res;
  135. dm:=4; % particularization to 4-dimensional Minkowski space
  136. res4:=res;
  137. length res4; % 8 is the correct number of terms.
  138. end;
  139. %in "skelsplt.red";
  140. tensor ff;
  141. %symtree(ff,{!*,{!-,1,2},3});
  142. symbolic procedure nordpl(u,v);
  143. if listp u and listp v then nordp(cadr u,cadr v) else
  144. if listp u then nordp(cadr u,v) else
  145. if listp v then nordp(u,cadr v) else nordp(u,v);
  146. flag('(nordpl),'opfn);
  147. %frule:={df(aa({x1},~mu1,~b),x1(~mu2))=>ff({x1},-mu2,mu1,b)+df(aa({x1},-mu2,b),x1(-mu1))
  148. % when nordpl(mu1,mu2)};
  149. %ffrule:={df(aa({x2},~mu1,~b),x2(~mu2))=>ff({x2},-mu2,mu1,b)+df(aa({x2},-mu2,b),x2(-mu1))
  150. % when nordpl(mu1,mu2)};
  151. frule:={df(aa({~x1},~mu1,~b),~x1(~mu2))=>ff({x1},-mu2,mu1,b)+df(aa({x1},-mu2,b),x1(-mu1))
  152. when nordpl(mu1,mu2)};
  153. res4 where frule;