123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- %%%%%%%%%%%%%%%%%%% A. Burnel and H. Caprasse %%%%%%%%%%%%%%%%%%%%%%
- %
- % Application of CANTENS.RED
- % Date: 15/09/98
- %
- % Computes the gluon contribution to the gluon self-energy in the
- % "finite" theory
- % contains initially 18 terms which are reduced to 10 by cantens
- % in a dm-dimensional Minkowski space and 8 terms in a 4-dimensional
- % Minkowski space.
- %
- % *** Will look much nicer if run in the GRAPHIC mode
- %
- % LOADING CANTENS
- load cantens$
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Structure definitions, Minkowski space X internal symmetry space
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- off onespace; % to be allowed to work within several subspaces
- define_spaces wholespace={dm+di,signature=1};
- define_spaces mink={dm,signature=1};%,indexrange=0 .. 3};
- define_spaces internal={di,signature=0};%,indexrange=4 .. 11};
- %
- % Memberships of indices:
- mk_ids_belong_space({mu1,mu2,nu1,nu2,tau},mink);
- mk_ids_belong_space({a1,a2,b1,b2,c1,c2},internal);
- %%%%%%%%%%%%%%%%
- % Used Tensors %
- %%%%%%%%%%%%%%%%
- %% variables x1,x2 and xi=x1-x2,
- %% aa, gluon field
- %% dd, contracted gluon field
- %% which appears inside the expression
- %% a is the antisymmetric structure constant of SU3.
- %% It is called "a" to assure that it appears first
- %% inside REDUCE expressions and to assure that they
- %% factorize in front of the output expression.
- %
- tensor aa,dd,a,x1,x2,xi; % tensor declaration
- make_variables x1,x2,xi; % variable declaration
- % declare to which subspace the declared tensors belong to.
- make_tensor_belong_space(x1,mink);
- make_tensor_belong_space(x2,mink);
- make_tensor_belong_space(xi,mink);
- make_tensor_belong_space(a,internal);
- antisymmetric a; % antisymmetry of structure constant.
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % building of starting expression to be manipulated and simplified.
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- es1:=g^2*a(a1,b1,c1)*a(a2,b2,c2);
- as1:=-aa(x1,nu1,-b1)*aa(x2,nu2,-b2)*df(df(dd(xi,mu1,-c1,mu2,-c2),xi(nu1)),xi(nu2))
- *dd(xi,-mu1,-a1,-mu2,-a2);
- as2:=-aa(x1,nu1,-b1)*aa(x2,nu2,-b2)*df(dd(xi,mu1,-c1,mu2,-a2),xi(nu1))
- *df(dd(xi,-mu1,-a1,-mu2,-c2),xi(nu2));
- as3:=aa(x1,nu1,-b1)*df(aa(x2,mu2,-c2),x2(nu2))*df(dd(xi,mu1,-c1,nu2,-b2),xi(nu1))
- *dd(xi,-mu1,-a1,-mu2,-a2);
- as4:=aa(x1,nu1,-b1)*df(aa(x2,mu2,-c2),x2(nu2))*df(dd(xi,mu1,-c1,-mu2,-a2),xi(nu1))
- *dd(xi,-mu1,-a1,nu2,-b2);
- as5:=-aa(x1,nu1,-b1)*aa(x2,mu2,-a2)*df(dd(xi,mu1,-c1,nu2,-b2),xi(nu1))
- *df(dd(xi,-mu1,-a1,-mu2,-c2),xi(nu2));
- as6:=-aa(x1,nu1,-b1)*aa(x2,mu2,-a2)*df(df(dd(xi,mu1,-c1,-mu2,-c2),xi(nu1)),xi(nu2))
- *dd(xi,-mu1,-a1,nu2,-b2);
- as7:=-df(aa(x1,mu1,-c1),x1(nu1))*aa(x2,nu2,-b2)*df(dd(xi,nu1,-b1,mu2,-c2),xi(nu2))
- *dd(xi,-mu1,-a1,-mu2,-a2);
- as8:=-df(aa(x1,mu1,-c1),x1(nu1))*aa(x2,nu2,-b2)*df(dd(xi,-mu1,-a1,mu2,-c2),xi(nu2))
- *dd(xi,nu1,-b1,-mu2,-a2);
- as9:=df(aa(x1,mu1,-c1),x1(nu1))*df(aa(x2,mu2,-c2),x2(nu2))*dd(xi,nu1,-b1,nu2,-b2)
- *dd(xi,-mu1,-a1,-mu2,-a2);
- as10:=df(aa(x1,mu1,-c1),x1(nu1))*df(aa(x2,mu2,-c2),x2(nu2))*dd(xi,nu1,-b1,-mu2,-a2)
- *dd(xi,-mu1,-a1,nu2,-b2);
- as11:=-df(aa(x1,mu1,-c1),x1(nu1))*aa(x2,mu2,-a2)*df(dd(xi,-mu1,-a1,-mu2,-c2),xi(nu2))
- *dd(xi,nu1,-b1,nu2,-b2);
- as12:=-df(aa(x1,mu1,-c1),x1(nu1))*aa(x2,mu2,-a2)*df(dd(xi,nu1,-b1,-mu2,-c2),xi(nu2))
- *dd(xi,-mu1,-a1,nu2,-b2);
- as13:=-aa(x1,mu1,-a1)*aa(x2,nu2,-b2)*df(dd(xi,nu1,-b1,mu2,-c2),xi(nu2))
- *df(dd(xi,-mu1,-c1,-mu2,-a2),xi(nu1));
- as14:=-aa(x1,mu1,-a1)*aa(x2,nu2,-b2)*dd(xi,nu1,-b1,mu2,-a2)
- *df(dd(xi,-mu1,-c1,-mu2,-c2),xi(nu1),xi(nu2));
- as15:=aa(x1,mu1,-a1)*df(aa(x2,mu2,-c2),x2(nu2))*dd(xi,nu1,-b1,nu2,-b2)
- *df(dd(xi,-mu1,-c1,-mu2,-a2),xi(nu1));
- as16:=aa(x1,mu1,-a1)*df(aa(x2,mu2,-c2),x2(nu2))*dd(xi,nu1,-b1,-mu2,-a2)
- *df(dd(xi,-mu1,-c1,nu2,-b2),xi(nu1));
- as17:=-aa(x1,mu1,-a1)*aa(x2,mu2,-a2)*df(dd(xi,-mu1,-c1,-mu2,-c2),xi(nu1),xi(nu2))
- *dd(xi,nu1,-b1,nu2,-b2);
- as18:=-aa(x1,mu1,-a1)*aa(x2,mu2,-a2)*df(dd(xi,-mu1,-c1,nu2,-b2),xi(nu1))
- *df(dd(xi,nu1,-b1,-mu2,-c2),xi(nu2));
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % building of the gluon contribution to gluon self-energy %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- es:=es1*for i:=1:18 sum mkid(as,i);
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Are some terms identical ? %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- es:=canonical es;
- length es;
- % no simplification
-
- tensor dc; % new tensor
- make_tensor_belong_space(dc,mink); % belongs to Minkowski space
- make_partic_tens(rho,metric); % "rho" is a metric tensor
- make_tensor_belong_space(rho,internal); % in the internal space
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % rewriting rule and subsequent simplification %
- % dd(mu1,mu2,a,b)=>rho(a,b)*dc(mu1,mu2) %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- ddrule:={dd({~xi},~a,~b,~c,~d)=>rho(b,d)*dc({xi},a,c)};
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % simplification after application of the rule %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- es:=(es where ddrule);
- %
- es:=canonical es;
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % Particular gauge: %
- % case of Fermi gauge : dc(mu1,mu2)=g(mu1,mu2)*dc %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- make_partic_tens(delta,delta); % delta tenseur defined with name "delta"
- % eta tenseur introduced with name "eta":
- make_partic_tens(eta,eta);
- make_tensor_belong_space(eta,mink);
- % rule for the choice of gauge:
- dcrule:={dc({~xi},~a,~c)=>eta(a,c)*dc(xi)};
- % rewriting of the expression
- res:=(es where dcrule);
- % simplification
- res:=canonical res;
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- % last rewriting rule: %
- % second derivative of dc(xi) with %
- % respect to xi tensor is zero %
- %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- dalrule:={df(dc(xi),xi(~a),xi(-~a))=>0};
- res:=(res where dalrule);
- canonical res - res; % gives 0
- length res;
- dm:=4; % particularization to 4-dimensional Minkowski space
- res4:=res;
- length res4; % 8 is the correct number of terms.
- end;
- %in "skelsplt.red";
- tensor ff;
- %symtree(ff,{!*,{!-,1,2},3});
- symbolic procedure nordpl(u,v);
- if listp u and listp v then nordp(cadr u,cadr v) else
- if listp u then nordp(cadr u,v) else
- if listp v then nordp(u,cadr v) else nordp(u,v);
- flag('(nordpl),'opfn);
- %frule:={df(aa({x1},~mu1,~b),x1(~mu2))=>ff({x1},-mu2,mu1,b)+df(aa({x1},-mu2,b),x1(-mu1))
- % when nordpl(mu1,mu2)};
- %ffrule:={df(aa({x2},~mu1,~b),x2(~mu2))=>ff({x2},-mu2,mu1,b)+df(aa({x2},-mu2,b),x2(-mu1))
- % when nordpl(mu1,mu2)};
- frule:={df(aa({~x1},~mu1,~b),~x1(~mu2))=>ff({x1},-mu2,mu1,b)+df(aa({x1},-mu2,b),x1(-mu1))
- when nordpl(mu1,mu2)};
- res4 where frule;
|