123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604 |
- Tue Feb 10 12:26:32 2004 run on Linux
- % test of DUMMY package version 1.1 running in REDUCE 3.6 and 3.7
- % DATE: 15 September 1998
- % Authors: H. Caprasse <hubert.caprasse@ulg.ac.be>
- %
- % Case of commuting operator:
- %
- operator co1,co2;
- % declare dummy indices
- % first syntax : base <name>
- %
- dummy_base dv;
- dv
- % dummy indices are dv1, dv2, dv3, ...
- exp := co2(dv2)*co2(dv2)$
- c_exp := canonical(exp);
- 2
- c_exp := co2(dv1)
- exp := dv2*co2(dv2)*co2(dv2)$
- c_exp := canonical(exp);
- 2
- c_exp := co2(dv1) *dv1
- exp := c_exp * co1(dv3);
- 2
- exp := co1(dv3)*co2(dv1) *dv1
- c_exp := canonical(exp);
- 2
- c_exp := co1(dv2)*co2(dv1) *dv1
- %
- operator a,aa,dd,te;
- clear_dummy_base;
- t
- dummy_names a1,a2,b1,b2,mu1,mu2,nu1,nu2;
- t
- es1:=a(a1,b1)*a(a2,b2);
- es1 := a(a1,b1)*a(a2,b2)
- asn14:=aa(mu1,a1)*aa(nu2,b2)*dd(nu1,b1,mu2,a2)
- *te(mu1,mu2,nu1,nu2);
- asn14 := aa(mu1,a1)*aa(nu2,b2)*dd(nu1,b1,mu2,a2)*te(mu1,mu2,nu1,nu2)
- asn17:=aa(mu1,a1)*aa(mu2,a2)*dd(nu1,b1,nu2,b2)
- *te(mu1,mu2,nu1,nu2);
- asn17 := aa(mu1,a1)*aa(mu2,a2)*dd(nu1,b1,nu2,b2)*te(mu1,mu2,nu1,nu2)
-
- esn14:=es1*asn14;
- esn14 :=
- a(a1,b1)*a(a2,b2)*aa(mu1,a1)*aa(nu2,b2)*dd(nu1,b1,mu2,a2)*te(mu1,mu2,nu1,nu2)
- esn17:=es1*asn17;
- esn17 :=
- a(a1,b1)*a(a2,b2)*aa(mu1,a1)*aa(mu2,a2)*dd(nu1,b1,nu2,b2)*te(mu1,mu2,nu1,nu2)
- esn:=es1*(asn14+asn17);
- esn := a(a1,b1)*a(a2,b2)*aa(mu1,a1)*te(mu1,mu2,nu1,nu2)
- *(aa(mu2,a2)*dd(nu1,b1,nu2,b2) + aa(nu2,b2)*dd(nu1,b1,mu2,a2))
-
- canonical esn;
- a(a1,a2)*a(b1,b2)*aa(mu2,b1)*(aa(mu1,a1)*dd(nu1,b2,nu2,a2)*te(mu2,mu1,nu1,nu2)
- + aa(mu1,a2)*dd(nu1,b2,nu2,a1)*te(mu2,nu2,nu1,mu1))
- % that the next result is correct is not trivial
- % to show.
- % for esn14 changes of names are
- %
- % nu1 -> nu1
- % b1 -> b2 -> a2
- % mu2 -> nu2 -> mu1 -> mu2
- %
- % for esn17 they are
- %
- % nu1 -> nu1
- % nu2 -> nu2
- % b1 -> b2 -> a2 -> a1 -> b1
- %
- % the last result should be zero
- canonical esn -(canonical esn14 +canonical esn17);
- 0
- % remove dummy_names and operators.
- clear_dummy_names;
- t
- clear a,aa,dd,te;
- %
- % Case of anticommuting operators
- %
- operator ao1, ao2;
- anticom ao1, ao2;
- t
- % product of anticommuting operators with FREE indices
- a_exp := ao1(s1)*ao1(s2) - ao1(s2)*ao1(s1);
- a_exp := ao1(s1)*ao1(s2) - ao1(s2)*ao1(s1)
- a_exp := canonical(a_exp);
- a_exp := 2*ao1(s1)*ao1(s2)
- % the indices are summed upon, i.e. are DUMMY indices
- clear_dummy_names;
- t
- dummy_base dv;
- dv
- a_exp := ao1(dv1)*ao1(dv2)$
- canonical(a_exp);
- 0
- a_exp := ao1(dv1)*ao1(dv2) - ao1(dv2)*ao1(dv1);
- a_exp := ao1(dv1)*ao1(dv2) - ao1(dv2)*ao1(dv1)
- a_exp := canonical(a_exp);
- a_exp := 0
- a_exp := ao1(dv2,dv3)*ao2(dv1,dv2)$
- a_exp := canonical(a_exp);
- a_exp := ao1(dv1,dv2)*ao2(dv3,dv1)
- a_exp := ao1(dv1)*ao1(dv3)*ao2(dv3)*ao2(dv1)$
- a_exp := canonical(a_exp);
- a_exp := - ao1(dv1)*ao1(dv2)*ao2(dv1)*ao2(dv2)
- % Case of non commuting operators
- %
- operator no1, no2, no3;
- noncom no1, no2, no3;
- n_exp := no3(dv2)*no2(dv3)*no1(dv1) + no3(dv3)*no2(dv1)*no1(dv2)
- + no3(dv1)*no2(dv2)*no1(dv3);
- n_exp := no3(dv1)*no2(dv2)*no1(dv3) + no3(dv2)*no2(dv3)*no1(dv1)
- + no3(dv3)*no2(dv1)*no1(dv2)
- n_exp:=canonical n_exp;
- n_exp := 3*no3(dv3)*no2(dv2)*no1(dv1)
- % ***
- % The example below displays a restriction of the package i.e
- % The non commuting operators are ASSUMED to COMMUTE with the
- % anticommuting operators.
- % ***
- exp := co1(dv1)*ao1(dv2,dv1,dv4)*no1(dv1,dv5)*co2(dv3)*ao1(dv1,dv3);
- exp := co1(dv1)*co2(dv3)*(ao1(dv2,dv1,dv4)*no1(dv1,dv5)*ao1(dv1,dv3))
- canonical(exp);
- - co1(dv1)*co2(dv2)*ao1(dv1,dv2)*ao1(dv3,dv1,dv4)*no1(dv1,dv5)
- exp := c_exp * a_exp * no3(dv2)*no2(dv3)*no1(dv1);
- 2
- exp := - co1(dv2)*co2(dv1) *dv1*ao1(dv1)*ao1(dv2)*ao2(dv1)*ao2(dv2)*no3(dv2)
- *no2(dv3)*no1(dv1)
- can_exp := canonical(exp);
- 2
- can_exp := - co1(dv2)*co2(dv1) *dv1*ao1(dv1)*ao1(dv2)*ao2(dv1)*ao2(dv2)
- *no3(dv2)*no2(dv3)*no1(dv1)
- % Case where some operators have a symmetry.
- %
- operator as1, as2;
- antisymmetric as1, as2;
- dummy_base s;
- s
- % With commuting and antisymmetric:
- asc_exp:=as1(s1,s2)*as1(s1,s3)*as1(s3,s4)*co1(s3)*co1(s4)+
- 2*as1(s1,s2)*as1(s1,s3)*as1(s3,s4)*co1(s2)*co1(s4)$
- canonical asc_exp;
- as1(s1,s2)*as1(s1,s3)*as1(s3,s4)*co1(s3)*co1(s4)
- % Indeed: the second term is identically zero as one sees
- % if the substitutions s2->s4, s4->s2 and
- % s1->s3, s3->s1 are sucessively done.
- %
- % With anticommuting and antisymmetric operators:
- dummy_base dv;
- dv
- exp1 := ao1(dv1)*ao1(dv2)$
- canonical(exp1);
- 0
- exp2 := as1(dv1,dv2)$
- canonical(exp2);
- 0
- canonical(exp1*exp2);
- as1(dv1,dv2)*ao1(dv1)*ao1(dv2)
- canonical(as1(dv1,dv2)*as2(dv2,dv1));
- - as1(dv1,dv2)*as2(dv1,dv2)
- % With symmetric and antisymmetric operators:
- operator ss1, ss2;
- symmetric ss1, ss2;
- exp := ss1(dv1,dv2)*ss2(dv1,dv2) - ss1(dv2,dv3)*ss2(dv2,dv3);
- exp := ss1(dv1,dv2)*ss2(dv1,dv2) - ss1(dv2,dv3)*ss2(dv2,dv3)
- canonical(exp);
- 0
- exp := as1(dv1,dv2)*as1(dv3,dv4)*as1(dv1,dv4);
- exp := as1(dv1,dv2)*as1(dv1,dv4)*as1(dv3,dv4)
- canonical(exp);
- 0
- % The last result is equal to half the sum given below:
- %
- exp + sub(dv2 = dv3, dv3 = dv2, dv1 = dv4, dv4 = dv1, exp);
- 0
- exp1 := as2(dv3,dv2)*as1(dv3,dv4)*as1(dv1,dv2)*as1(dv1,dv4);
- exp1 := - as1(dv1,dv2)*as1(dv1,dv4)*as1(dv3,dv4)*as2(dv2,dv3)
- canonical(exp1);
- as1(dv1,dv2)*as1(dv1,dv3)*as1(dv3,dv4)*as2(dv2,dv4)
- exp2 := as2(dv1,dv4)*as1(dv1,dv3)*as1(dv2,dv4)*as1(dv2,dv3);
- exp2 := as1(dv1,dv3)*as1(dv2,dv3)*as1(dv2,dv4)*as2(dv1,dv4)
- canonical(exp2);
- as1(dv1,dv2)*as1(dv1,dv3)*as1(dv3,dv4)*as2(dv2,dv4)
- canonical(exp1-exp2);
- 0
- % Indeed:
- %
- exp2 - sub(dv1 = dv3, dv2 = dv1, dv3 = dv4, dv4 = dv2, exp1);
- 0
- % Case where mixed or incomplete symmetries for operators are declared.
- % Function 'symtree' can be used to declare an operator symmetric
- % or antisymmetric:
- operator om;
- symtree(om,{!+,1,2,3});
- exp:=om(dv1,dv2,dv3)+om(dv2,dv1,dv3)+om(dv3,dv2,dv1);
- exp := om(dv1,dv2,dv3) + om(dv2,dv1,dv3) + om(dv3,dv2,dv1)
- canonical exp;
- 3*om(dv1,dv2,dv3)
- % Declare om to be antisymmetric in the two last indices ONLY:
- symtree(om,{!*,{!*,1},{!-,2,3}});
- canonical exp;
- 0
-
- % With an antisymmetric operator m:
- operator m;
- dummy_base s;
- s
- exp := om(nu,s3,s4)*i*psi*(m(s1,s4)*om(mu,s1,s3)
- + m(s2,s3)*om(mu,s4,s2) - m(s1,s3)*om(mu,s1,s4)
- - m(s2,s4)*om(mu,s3,s2))$
- canonical exp;
- - 4*m(s1,s2)*om(mu,s1,s3)*om(nu,s2,s3)*i*psi
- % Case of the Riemann tensor
- %
- operator r;
- symtree (r, {!+, {!-, 1, 2}, {!-, 3, 4}});
- % Without anty dummy indices.
- clear_dummy_base;
- t
- exp := r(dv1, dv2, dv3, dv4) * r(dv2, dv1, dv4, dv3)$
- canonical(exp);
- 2
- r(dv1,dv2,dv3,dv4)
- % With dummy indices:
-
- dummy_base dv;
- dv
- canonical( r(x,y,z,t) );
- - r(t,z,x,y)
- canonical( r(x,y,t,z) );
- r(t,z,x,y)
- canonical( r(t,z,y,x) );
- - r(t,z,x,y)
- exp := r(dv1, dv2, dv3, dv4) * r(dv2, dv1, dv4, dv3)$
- canonical(exp);
- 2
- r(dv1,dv2,dv3,dv4)
- exp := r(dv1, dv2, dv3, dv4) * r(dv1, dv3, dv2, dv4)$
- canonical(exp);
- r(dv1,dv2,dv3,dv4)*r(dv1,dv3,dv2,dv4)
- clear_dummy_base;
- t
- dummy_names i,j,k,l;
- t
- exp := r(i,j,k,l)*ao1(i,j)*ao1(k,l)$
- canonical(exp);
- 0
- exp := r(k,i,l,j)*as1(k,i)*as1(k,j)$
- canonical(exp);
- - as1(i,j)*as1(i,k)*r(i,k,j,l)
- % Cleanup of the previousy declared dummy variables..
- clear_dummy_names;
- t
- clear_dummy_base;
- t
- exp := co1(dv3)$
- c_exp := canonical(exp);
- c_exp := co1(dv3)
- end;
- Time for test: 30 ms
|