123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326 |
- xmodule zfactor; % Integer factorization.
-
- % Author: Julian Padget.
- % Modifications by: Fran Burstall, John Abbott, Herbert Melenk,
- % Arthur Norman.
- exports nextprime, primep, zfactor, zfactor1, nrootnn;
- % nextprime - returns the next prime GREATER than its argument;
- % primep - determines whether argument is prime or not;
- % zfactor - returns an alist of factors dotted with their multiplicities
- imports evenp, gcdn, general!-modular!-expt, general!-modular!-times,
- idifference, igreaterp, ilessp, iplus2, iroot, isqrt, leq,
- modular!-expt, modular!-times, neq, prepf, prin2t, random, reversip,
- set!-general!-modulus, set!-modulus, set!-small!-modulus, typerr;
- % needs bigmod,smallmod;
- %
- % internal-functions add-factor, general-primep, mcfactor!*,
- % internal-primep, mcfactor, small-primep;
-
- % Parameters to this module are:
- %
- % !*confidence!* - controls the computation in the primality test.
- % Probability that a number is composite when test says it is
- % prime is 1/(2**(2*!*confidence!*)).
- %
- % !*maxtrys!* - controls the maximum number of attempts to be made
- % at factorisation (using mcfactor) whilst varying the polynomial
- % used as part of the Monte-Carlo technique. When !*maxtrys!* is
- % exceeded assumes n is prime (case will most likely occur when
- % primality test fails).
- %
- % !*mod!* - controls the modulus of the numbers emitted by the random
- % number generator. It is important that the number being tested
- % for primality should lie in [0,!*mod!*].
- %
- % Globals private to this module are:
- %
- % !*primelist!* - a list of the first xxx prime numbers used in the
- % first part of the factorization where trial division is
- % employed.
- %
- % !*last!-prime!-in!-list!* - the largest prime in the !*primelist!*
-
- fluid '(!*maxtrys!* !*confidence!*);
-
- !*maxtrys!*:=10; !*confidence!* := 40;
-
- global '(!*last!-prime!-squared!* !*primelist!*
- !*last!-prime!-in!-list!* largest!-small!-modulus);
- !*primelist!*:='(
- 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
- 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191
- 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283
- 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401
- 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509
- 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631
- 641 643 647 653 659 661 673 677 683 691 701 709 719 727 733 739 743 751
- 757 761 769 773 787 797 809 811 821 823 827 829 839 853 857 859 863 877
- 881 883 887 907 911 919 929 937 941 947 953 967 971 977 983 991 997 1009
- 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093
- 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193 1201
- 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297
- 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427
- 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499
- 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607
- 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709
- 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823
- 1831 1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933
- 1949 1951 1973 1979 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039
- 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113 2129 2131 2137 2141
- 2143 2153 2161 2179 2203 2207 2213 2221 2237 2239 2243 2251 2267 2269
- 2273 2281 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351 2357 2371
- 2377 2381 2383 2389 2393 2399 2411 2417 2423 2437 2441 2447 2459 2467
- 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609
- 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687 2689 2693 2699
- 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789 2791 2797
- 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903 2909
- 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037
- 3041 3049 3061 3067 3079 3083 3089 3109 3119 3121 3137 3163 3167 3169
- 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299
- 3301 3307 3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389
- 3391 3407 3413 3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517
- 3527 3529 3533 3539 3541 3547 3557 3559 3571 )$
- !*last!-prime!-in!-list!* := car reverse !*primelist!*;
-
- !*last!-prime!-squared!* := !*last!-prime!-in!-list!*^2;
- symbolic procedure add!-factor(n,l);
- (lambda (p); if p then << rplacd(p,add1 cdr p); l>> else (n . 1) . l)
- if pairp l then if n>(caar l) then nil else assoc(n,l) else nil;
-
- symbolic procedure zfactor n; zfactor1(n,t);
- symbolic procedure zfactor1(n,bool);
- % If bool is NIL, mcfactor!* isn't used.
- if n<0 then ((-1) . 1) . zfactor1(-n,bool)
- else if n<4 then list(n . 1)
- else begin scalar primelist,factor!-list,p,qr;
- primelist := !*primelist!*;
- factor!-list := nil;
- while primelist do
- <<p := car primelist; primelist := cdr primelist;
- while cdr(qr := divide(n, p)) = 0 do
- <<n:= car qr; factor!-list:= add!-factor(p,factor!-list)>>;
- if n neq 1 and p*p>n
- then <<primelist := nil;
- factor!-list:=add!-factor(n,factor!-list);
- n := 1>>>>;
- return if n=1 then factor!-list
- else if null bool then (n . 1) . factor!-list
- else mcfactor!*(n,factor!-list)
- end;
- symbolic procedure mcfactor!*(n,factors!-so!-far);
- if internal!-primep n then add!-factor(n,factors!-so!-far)
- else <<n:=(lambda (p,tries); <<
- while (atom p) and (tries<!*maxtrys!*) do <<
- tries:=tries+1;
- p:=mcfactor(n,tries)>>;
- if tries>!*maxtrys!* then <<
- prin2 "ZFACTOR(mcfactor!*): Assuming ";
- prin2 n; prin2t " is prime";
- p:=list n>>
- else p>>)
- (mcfactor(n,1),1);
- if atom n then add!-factor(n,factors!-so!-far)
- else if car n < cdr n then
- mcfactor!*(cdr n,mcfactor!*(car n,factors!-so!-far))
- else mcfactor!*(car n,mcfactor!*(cdr n,factors!-so!-far))>>;
-
- symbolic procedure mcfactor(n,p);
- % Based on "An Improved Monte-Carlo Factorisation Algorithm" by
- % R.P.Brent in BIT 20 (1980) pp 176-184. Argument n is the number to
- % factor, p specifies the constant term of the polynomial. There are
- % supposed to be optimal p's for each n, but in general p=1 works well.
- begin scalar gg,k,m,q,r,x,y,ys;
- m := 20;
- y:=0; r:=q:=1;
- outer:
- x:=y;
- for i:=1:r do y:=remainder(y*y+p,n);
- k:=0;
- inner:
- ys:=y;
- for i:=1:(if m<(r-k) then m else r-k) do <<
- y:=remainder(y*y+p,n);
- q:=remainder(q*abs(x-y),n)
- >>;
- gg:=gcdn(q,n);
- k:=k+m;
- if (k<r) and (gg leq 1) then goto inner;
- r:=2*r;
- if gg leq 1 then goto outer;
- if gg=n then begin
- loop:
- ys:=remainder(ys*ys+p,n);
- gg:=gcdn(abs(x-ys),n);
- if gg leq 1 then goto loop
- end;
- return if gg=n then n else gg . (n/gg)
- end;
-
- symbolic procedure primep n;
- % Returns T if n is prime (an integer that is not zero or a unit).
- if not fixp n then typerr(n,"integer")
- % then <<lprim list("No primep function defined for",n); nil>>
- else if n<0 then primep(-n)
- else if n=1 then nil
- else if n<=!*last!-prime!-in!-list!* then n member !*primelist!*
- else if n<=!*last!-prime!-squared!*
- then begin scalar p;
- p := !*primelist!*;
- while p and remainder(n,car p) neq 0 do p := cdr p;
- return null p
- end
- else if n>largest!-small!-modulus then general!-primep n
- else small!-primep n;
- flag('(primep),'boolean);
- symbolic procedure internal!-primep n;
- if n>largest!-small!-modulus then general!-primep n
- else small!-primep n;
- % This is a version of primep written by FEB for inclusion in zfactor.
- % It provides small-primep and general-primep with the following
- % corrections of the distribution versions:
- % (1) random number zero excluded as a potential witness
- % (2) correct range of powers of seed provided
- % (3) inspection for -1 replacing gcd's.
- symbolic procedure small!-primep n;
- % Based on an algorithm of M.Rabin published in the Journal of Number
- % Theory Vol 12, pp 128-138 (1980).
- begin integer i,l,m,x,y,w,save; scalar result;
- % Filter out some easy cases first
- if evenp n or remainder(n,3) = 0 then return nil;
- m := n-1;
- save := set!-small!-modulus n;
- % Express n-1 = (2^l)*m
- l:=0;
- while evenp m do <<m := m/2; l := l+1>>;
- i:=1;
- result:=t;
- while result and i<=!*confidence!* do <<
- % Select a potential witness, noting 0, 1 and -1 are not liable to help.
- w := 1 + random(n-2);
- % Raise to the odd power.
- x := modular!-expt(w, m);
- % From here I can complete the calculation of w^(n-1) by doing a
- % sequence of squaring operations. While I do that I check to see if I
- % come across a non-trivial square root of 1, and if I do then I know n
- % could not have been prime. In fact in that case I could exhibit a
- % factor, but that does not concern me here.
- if x neq 1 then <<
- for k:=1:l do <<
- y := modular!-times(x,x);
- % It is tolerable to continue round the loop after setting result=nil
- % because I will then be repeating a squaring of 1, which is cheap.
- if y=1 and x neq (n-1) and x neq 1 then result := nil
- else x := y >>;
- % Also if I do not get to 1 at the end then the number is composite, but
- % I have no clue as to any factor.
- if x neq 1 then result := nil >>;
- i:=i+1 >>;
- set!-small!-modulus save;
- return result
- end;
- symbolic procedure general!-primep n;
- % Based on an algorithm of M.Rabin published in the Journal of Number
- % Theory Vol 12, pp 128-138 (1980).
- begin integer i,l,m,x,y,w,save; scalar result;
- % Filter out some easy cases first
- if evenp n or remainder(n,3) = 0 then return nil;
- m := n-1;
- save := set!-general!-modulus n;
- % Express n-1 = (2^l)*m
- l:=0;
- while evenp m do <<m := m/2; l := l+1>>;
- i:=1;
- result:=t;
- while result and i<=!*confidence!* do <<
- % Select a potential witness, noting 0, 1 and -1 are not liable to help.
- w := 1 + random(n-2);
- % Raise to the odd power.
- x:=general!-modular!-expt(w, m);
- % From here I can complete the calculation of w^(n-1) by doing a
- % sequence of squaring operations. While I do that I check to see if I
- % come across a non-trivial square root of 1, and if I do then I know n
- % could not have been prime. In fact in that case I could exhibit a
- % factor, but that does not concern me here.
- if x neq 1 then <<
- for k:=1:l do <<
- y:=general!-modular!-times(x,x);
- % It is tolerable to continue round the loop after setting result=nil
- % because I will then be repeating a squaring of 1, which is cheap.
- if y=1 and x neq (n-1) and x neq 1 then result := nil
- else x := y >>;
- % Also if I do not get to 1 at the end then the number is composite, but
- % I have no clue as to any factor.
- if x neq 1 then result := nil >>;
- i:=i+1 >>;
- set!-general!-modulus save;
- return result
- end;
- % The next function comes from J.H. Davenport.
- symbolic procedure nextprime p;
- % Returns the next prime number bigger than p.
- if null p or p=0 or p=1 or p=-1 or p=-2 then 2
- else if p=-3 then -2
- else if not fixp p then typerr(!*f2a p,"integer")
- else begin
- if evenp p then p:=p+1 else p:=p+2;
- while not primep p do p:=p+2;
- return p
- end;
- put('nextprime,'polyfn,'nextprime);
- % The following definition has been added by Herbert Melenk.
- symbolic procedure nrootnn(n,x);
- % N is an integer, x a positive integer. Value is a pair
- % of integers r,s such that r*s**(1/x)=n**(1/x). The decomposition
- % may be incomplete if the number is too big. The extraction of
- % the members of primelist* is complete.
- begin scalar pl,signn,qr,w; integer r,s,p,q;
- r := 1; s := 1;
- if n<0 then <<n := -n; if evenp x then signn := t else r := -1>>;
- pl:= !*primelist!*;
- loop:
- p:=car pl; pl:=cdr pl; q:=0;
- while cdr (qr:=divide(n,p))=0 do <<n:=car qr; q:=q #+ 1>>;
- if not (q #< x) then
- <<w:=divide(q,x); r:=r*(p**car w); q:=cdr w>>;
- while q #> 0 do <<s:=s*p; q:=q #- 1>>;
- if car qr < p then << s:=n*s; goto done>>;
- if pl then goto loop;
- % heuristic bound for complete factorization.
- if 10^20 > n then
- <<q:=mcfactor!*(n,nil);
- for each j in q do
- <<w := divide(cdr j,x);
- r := car j**car w*r;
- s := car j**cdr w*s>>;
- >>
- else if (q:=iroot(n,x)) then r:=r*q
- else s:=n*s;
- done:
- if signn then s := -s;
- return r . s
- end;
-
- endmodule;
- end;
|