123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- module intro; % Introductory material for algebraic mode.
- % Author: Anthony C. Hearn.
- % Copyright (c) 1991 RAND. All rights reserved.
- fluid '(!*cref !*exp !*factor !*fort !*ifactor !*intstr !*lcm !*mcd
- !*msg !*mode !*nat !*nero !*period !*precise !*pri !*protfg
- !*rationalize !*reduced !*sub2 !*varopt posn!* subfg!*);
- global '(!*resubs
- !*val
- erfg!*
- exlist!*
- initl!*
- nat!*!*
- ofl!*
- simpcount!*
- simplimit!*
- tstack!*);
- % Non-local variables needing top level initialization.
- !*exp := t; % expansion control flag;
- !*lcm := t; % least common multiple computation flag;
- !*mcd := t; % common denominator control flag;
- !*mode := 'symbolic; % current evaluation mode;
- !*msg := t; % flag controlling message printing;
- !*nat := t; % specifies natural printing mode;
- !*period := t; % prints a period after a fixed coefficient
- % when FORT is on;
- !*precise := t; % Specifies more precise handling of surds.
- !*resubs := t; % external flag controlling resubstitution;
- !*val := t; % controls operator argument evaluation;
- !*varopt := t; % Used by SOLVE, etc.
- exlist!* := '((!*)); % property list for standard forms used as
- % kernels;
- initl!* := append('(subfg!* !*sub2 tstack!*),initl!*);
- simpcount!* := 0; % depth of recursion within simplifier;
- simplimit!* := 2000; % allowed recursion limit within simplifier;
- subfg!* := t; % flag to indicate whether substitution
- % is required during evaluation;
- tstack!* := 0; % stack counter in SIMPTIMES;
- % Initial values of some global variables in BEGIN1 loops.
- put('subfg!*,'initl,t);
- put('tstack!*,'initl,0);
- % Description of some non-local variables used in algebraic mode.
- % alglist!* := nil . nil; %association list for previously simplified
- %expressions;
- % asymplis!* := nil; %association list of asymptotic replacements;
- % cursym!* current symbol (i. e. identifier, parenthesis,
- % delimiter, e.t.c,) in input line;
- % dmode!* := nil; %name of current polynomial domain mode if not
- %integer;
- % domainlist!* := nil; %list of currently supported poly domain modes;
- % dsubl!* := nil; %list of previously calculated derivatives of
- % expressions;
- % exptl!* := nil; %list of exprs with non-integer exponents;
- % frlis!* := nil; %list of renamed free variables to be found in
- %substitutions;
- % kord!* := nil; %kernel order in standard forms;
- % kprops!* := nil; %list of active non-atomic kernel plists;
- % mchfg!* := nil; %indicates that a pattern match occurred during
- %a cycle of the matching routines;
- % mul!* := nil; %list of additional evaluations needed in a
- %given multiplication;
- % nat!*!* := nil; %temporary variable used in algebraic mode;
- % ncmp!* := nil; %flag indicating non-commutative multiplication
- %mode;
- % ofl!* := nil; %current output file name;
- % posn!* := nil; %used to store output character position in
- %printing functions;
- % powlis!* := nil; %association list of replacements for powers;
- % powlis1!* := nil; %association list of conditional replacements
- %for powers;
- % subl!* := nil; %list of previously evaluated expressions;
- % wtl!* := nil; %tells that a WEIGHT assignment has been made;
- % !*ezgcd := nil; %ezgcd calculation flag;
- % !*float := nil; %floating arithmetic mode flag;
- % !*fort := nil; %specifies FORTRAN output;
- % !*gcd := nil; %greatest common divisor mode flag;
- % !*group := nil; %causes expressions to be grouped when EXP off;
- % !*intstr := nil; %makes expression arguments structured;
- % !*int indicates interactive system use;
- % !*match := nil; %list of pattern matching rules;
- % !*nero := nil; %flag to suppress printing of zeros;
- % !*nosubs := nil; %internal flag controlling substitution;
- % !*numval := nil; %used to indicate that numerical expressions
- %should be converted to a real value;
- % !*outp := nil; %holds prefix output form for extended output
- %package;
- % !*pri := nil; %indicates that fancy output is required;
- % !*reduced := nil; %causes arguments of radicals to be factored.
- %E.g., sqrt(-x) --> i*sqrt(x);
- % !*sub2 := nil; %indicates need for call of RESIMP;
- % ***** UTILITY FUNCTIONS *****.
- symbolic procedure mkid(x,y);
- % creates the ID XY from identifier X and (evaluated) object Y.
- if not idp x then typerr(x,"MKID root")
- else if atom y and (idp y or fixp y and not minusp y)
- then intern compress nconc(explode x,explode y)
- else typerr(y,"MKID index");
- flag('(mkid),'opfn);
- symbolic procedure multiple!-result(z,w);
- % Z is a list of items (n . prefix-form), in ordering in descending
- % order wrt n, which must be non-negative. W is either an array
- % name, another id, a template for a multi-dimensional array or NIL.
- % Elements of Z are accordingly stored in W if it is non-NIL, or
- % returned as a list otherwise.
- begin scalar x,y;
- if null w then return 'list . reversip!* fillin z;
- x := getrtype w;
- if x and not(x eq 'array) then typerr(w,"array or id");
- lpriw("*****",
- list(if x eq 'array then "ARRAY" else "ID",
- "fill no longer supported --- use lists instead"));
- if atom w then (if not arrayp w
- then (if numberp(w := reval w) then typerr(w,'id)))
- else if not arrayp car w then typerr(car w,'array)
- else w := car w . for each x in cdr w
- collect if x eq 'times then x else reval x;
- x := length z-1; % don't count zeroth element;
- if not((not atom w and atom car w
- and (y := dimension car w))
- or ((y := dimension w) and null cdr y))
- then <<y := explode w;
- w := nil;
- for each j in z do
- <<w := intern compress append(y,explode car j) . w;
- setk1(car w,cdr j,t)>>;
- lprim if length w=1 then list(car w,"is non zero")
- else aconc!*(reversip!* w,"are non zero");
- return x>>
- else if atom w
- then <<if caar z neq (car y-1)
- then <<y := list(caar z+1);
- % We don't use put!-value here.
- put(w,'avalue,
- {'array,mkarray1(y,'algebraic)});
- put(w,'dimension,y)>>;
- w := list(w,'times)>>;
- y := pair(cdr w,y);
- while y and not smemq('times,caar y) do y := cdr y;
- if null y then errach "MULTIPLE-RESULT";
- y := cdar y-reval subst(0,'times,caar y)-1;
- %-1 needed since DIMENSION gives length, not highest index;
- if caar z>y
- then rerror(alg,3,list("Index",caar z,"out of range"));
- repeat
- if null z or y neq caar z
- then setelv(subst(y,'times,w),0)
- else <<setelv(subst(y,'times,w),cdar z); z := cdr z>>
- until (y := y-1) < 0;
- return x
- end;
- symbolic procedure fillin u;
- % fills in missing terms in multiple result argument list u
- % and returns list of coefficients.
- if null u then nil else fillin1(u,caar u);
- symbolic procedure fillin1(u,n);
- if n<0 then nil
- else if u and caar u=n then cdar u . fillin1(cdr u,n-1)
- else 0 . fillin1(u,n-1);
- % ***** FUNCTIONS FOR PRINTING DIAGNOSTIC AND ERROR MESSAGES *****
- symbolic procedure msgpri(u,v,w,x,y);
- begin integer posn!*; scalar nat1,z,pline!*;
- if null y and null !*msg then return;
- nat1 := !*nat;
- !*nat := nil;
- if ofl!* and (!*fort or not nat1) then go to c;
- a: terpri();
- lpri ((if null y then "***" else "*****")
- . if u and atom u then list u else u);
- posn!* := posn();
- maprin v;
- prin2 " ";
- lpri if w and atom w then list w else w;
- posn!* := posn();
- maprin x;
- terpri!*(t); % if not y or y eq 'hold then terpri();
- if null z then go to b;
- wrs cdr z;
- go to d;
- b: if null ofl!* then go to d;
- c: z := ofl!*;
- wrs nil;
- go to a;
- d: !*nat := nat1;
- if y then if y eq 'hold then erfg!* := y else error1()
- end;
- symbolic procedure errach u;
- begin
- terpri!* t;
- lprie "CATASTROPHIC ERROR *****";
- printty u;
- lpriw(" ",nil);
- rerror(alg,4,
- "Please send output and input listing to A. C. Hearn")
- end;
- symbolic procedure errpri1 u;
- msgpri("Substitution for",u,"not allowed",nil,t); % was 'HOLD
- symbolic procedure errpri2(u,v);
- msgpri("Syntax error:",u,"invalid",nil,v);
- symbolic procedure redmsg(u,v);
- if null !*msg or v neq "operator" then nil
- else if terminalp() then yesp list("Declare",u,v,"?") or error1()
- else lprim list(u,"declared",v);
- symbolic procedure typerr(u,v);
- % Note this replaces definition in rlisp/lpri.
- <<if not !*protfg
- then <<terpri!* t;
- prin2!* "***** ";
- if not atom u and atom car u and cdr u and atom cadr u
- and null cddr u
- then <<prin2!* car u; prin2!* " "; prin2!* cadr u>>
- else if null u then prin2!* u
- else maprin u;
- prin2!* " invalid as "; prin2!* v;
- terpri!* nil>>;
- erfg!* := t; error1()>>;
- % ***** ALGEBRAIC MODE DECLARATIONS *****
- flag ('(aeval cond getel go prog progn prog2 return
- reval setq setk setel assgnpri !*s2i),'nochange);
- flag ('(or and not member memq equal neq eq geq greaterp leq
- fixp lessp numberp ordp freeof),'boolean);
- flag ('(or and not),'boolargs);
- deflist ('((exp ((nil (rmsubs)) (t (rmsubs))))
- (factor ((nil (setq !*exp t) (rmsubs))
- (t (setq !*exp nil) (rmsubs))))
- (fort ((nil (setq !*nat nat!*!*)) (t (setq !*nat nil))))
- (gcd ((t (rmsubs))))
- (intstr ((nil (rmsubs)) (t (rmsubs))))
- (mcd ((nil (rmsubs)) (t (rmsubs))))
- (nat ((nil (setq nat!*!* nil)) (t (setq nat!*!* t))))
- (numval ((t (rmsubs))))
- (rationalize ((t (rmsubs))))
- (reduced ((t (rmsubs))))
- (val ((t (rmsubs))))),'simpfg);
- switch exp,cref,factor,fort,gcd,ifactor,intstr,lcm,mcd,nat,nero,numval,
- period,precise,pri,rationalize,reduced,varopt; % resubs, val.
- endmodule;
- end;
|