r38_0500.html 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062
  1. <a name=r38_0500>
  2. <title>ChebyshevT</title></a>
  3. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  4. E"></p>
  5. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  6. <b>CHEBYSHEVT</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  7. <P>
  8. The <em>ChebyshevT</em> operator computes the nth Chebyshev T Polynomial (of the
  9. first kind).
  10. <P>
  11. <P>
  12. <P> <H3>
  13. syntax: </H3>
  14. <em>ChebyshevT</em>(&lt;integer&gt;,&lt;expression&gt;)
  15. <P>
  16. <P>
  17. <P>
  18. <P> <H3>
  19. examples: </H3>
  20. <p><pre><tt>
  21. ChebyshevT(3,xx);
  22. 2
  23. xx*(4*xx - 3)
  24. ChebyshevT(3,4);
  25. 244
  26. </tt></pre><p>Chebyshev's T polynomials are computed using the recurrence relati
  27. on:
  28. <P>
  29. <P>
  30. ChebyshevT(n,x) := 2x*ChebyshevT(n-1,x) - ChebyshevT(n-2,x) with
  31. <P>
  32. <P>
  33. ChebyshevT(0,x) := 0 and ChebyshevT(1,x) := x
  34. <P>
  35. <P>
  36. <P>
  37. <a name=r38_0501>
  38. <title>ChebyshevU</title></a>
  39. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  40. E"></p>
  41. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  42. <b>CHEBYSHEVU</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  43. <P>
  44. The <em>ChebyshevU</em> operator returns the nth Chebyshev U Polynomial (of the
  45. second kind).
  46. <P>
  47. <P>
  48. <P> <H3>
  49. syntax: </H3>
  50. <em>ChebyshevU</em>(&lt;integer&gt;,&lt;expression&gt;)
  51. <P>
  52. <P>
  53. <P>
  54. <P> <H3>
  55. examples: </H3>
  56. <p><pre><tt>
  57. ChebyshevU(3,xx);
  58. 2
  59. 4*x*(2*x - 1)
  60. ChebyshevU(3,4);
  61. 496
  62. </tt></pre><p>Chebyshev's U polynomials are computed using the recurrence relati
  63. on:
  64. <P>
  65. <P>
  66. ChebyshevU(n,x) := 2x*ChebyshevU(n-1,x) - ChebyshevU(n-2,x) with
  67. <P>
  68. <P>
  69. ChebyshevU(0,x) := 0 and ChebyshevU(1,x) := 2x
  70. <P>
  71. <P>
  72. <P>
  73. <P>
  74. <a name=r38_0502>
  75. <title>HermiteP</title></a>
  76. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  77. E"></p>
  78. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  79. <b>HERMITEP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  80. <P>
  81. The <em>HermiteP</em> operator returns the nth Hermite Polynomial.
  82. <P>
  83. <P>
  84. <P> <H3>
  85. syntax: </H3>
  86. <em>HermiteP</em>(&lt;integer&gt;,&lt;expression&gt;)
  87. <P>
  88. <P>
  89. <P>
  90. <P> <H3>
  91. examples: </H3>
  92. <p><pre><tt>
  93. HermiteP(3,xx);
  94. 2
  95. 4*xx*(2*xx - 3)
  96. HermiteP(3,4);
  97. 464
  98. </tt></pre><p>Hermite polynomials are computed using the recurrence relation:
  99. <P>
  100. <P>
  101. HermiteP(n,x) := 2x*HermiteP(n-1,x) - 2*(n-1)*HermiteP(n-2,x) with
  102. <P>
  103. <P>
  104. HermiteP(0,x) := 1 and HermiteP(1,x) := 2x
  105. <P>
  106. <P>
  107. <P>
  108. <P>
  109. <a name=r38_0503>
  110. <title>LaguerreP</title></a>
  111. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  112. E"></p>
  113. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  114. <b>LAGUERREP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  115. <P>
  116. The <em>LaguerreP</em> operator computes the nth Laguerre Polynomial.
  117. The two argument call of LaguerreP is a (common) abbreviation of
  118. LaguerreP(n,0,x).
  119. <P>
  120. <P>
  121. <P> <H3>
  122. syntax: </H3>
  123. <em>LaguerreP</em>(&lt;integer&gt;,&lt;expression&gt;) or
  124. <P>
  125. <P>
  126. <em>LaguerreP</em>(&lt;integer&gt;,&lt;expression&gt;,&lt;expression&gt;)
  127. <P>
  128. <P>
  129. <P>
  130. <P> <H3>
  131. examples: </H3>
  132. <p><pre><tt>
  133. LaguerreP(3,xx);
  134. 3 2
  135. (- xx + 9*xx - 18*xx + 6)/6
  136. LaguerreP(2,3,4);
  137. -2
  138. </tt></pre><p>Laguerre polynomials are computed using the recurrence relation:
  139. <P>
  140. <P>
  141. LaguerreP(n,a,x) := (2n+a-1-x)/n*LaguerreP(n-1,a,x) -
  142. (n+a-1) * LaguerreP(n-2,a,x) with
  143. <P>
  144. <P>
  145. LaguerreP(0,a,x) := 1 and LaguerreP(2,a,x) := -x+1+a
  146. <P>
  147. <P>
  148. <P>
  149. <a name=r38_0504>
  150. <title>LegendreP</title></a>
  151. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  152. E"></p>
  153. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  154. <b>LEGENDREP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  155. <P>
  156. The binary <em>LegendreP</em> operator computes the nth Legendre
  157. Polynomial which is
  158. a special case of the nth Jacobi Polynomial with
  159. <P>
  160. <P>
  161. LegendreP(n,x) := JacobiP(n,0,0,x)
  162. <P>
  163. <P>
  164. The ternary form returns the associated Legendre Polynomial (see below).
  165. <P>
  166. <P>
  167. <P> <H3>
  168. syntax: </H3>
  169. <em>LegendreP</em>(&lt;integer&gt;,&lt;expression&gt;) or
  170. <P>
  171. <P>
  172. <em>LegendreP</em>(&lt;integer&gt;,&lt;expression&gt;,&lt;expression&gt;)
  173. <P>
  174. <P>
  175. <P>
  176. <P> <H3>
  177. examples: </H3>
  178. <p><pre><tt>
  179. LegendreP(3,xx);
  180. 2
  181. xx*(5*xx - 3)
  182. ----------------
  183. 2
  184. LegendreP(3,2,xx);
  185. 2
  186. 15*xx*( - xx + 1)
  187. </tt></pre><p>The ternary form of the operator <em>LegendreP</em> is the associa
  188. ted
  189. Legendre Polynomial defined as
  190. <P>
  191. <P>
  192. P(n,m,x) = (-1)**m * (1-x**2)**(m/2) * df(LegendreP(n,x),x,m)
  193. <P>
  194. <P>
  195. <P>
  196. <a name=r38_0505>
  197. <title>JacobiP</title></a>
  198. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  199. E"></p>
  200. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  201. <b>JACOBIP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  202. <P>
  203. The <em>JacobiP</em> operator computes the nth Jacobi Polynomial.
  204. <P>
  205. <P>
  206. <P> <H3>
  207. syntax: </H3>
  208. <em>JacobiP</em>(&lt;integer&gt;,&lt;expression&gt;,&lt;expression&gt;,
  209. &lt;expression&gt;)
  210. <P>
  211. <P>
  212. <P>
  213. <P> <H3>
  214. examples: </H3>
  215. <p><pre><tt>
  216. JacobiP(3,4,5,xx);
  217. 3 2
  218. 7*(65*xx - 13*xx - 13*xx + 1)
  219. ----------------------------------
  220. 8
  221. JacobiP(3,4,5,6);
  222. 94465/8
  223. </tt></pre><p>
  224. <a name=r38_0506>
  225. <title>GegenbauerP</title></a>
  226. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  227. E"></p>
  228. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  229. <b>GEGENBAUERP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  230. <P>
  231. <P>
  232. <P>
  233. The <em>GegenbauerP</em> operator computes Gegenbauer's (ultraspherical)
  234. polynomials.
  235. <P>
  236. <P>
  237. <P> <H3>
  238. syntax: </H3>
  239. <em>GegenbauerP</em>(&lt;integer&gt;,&lt;expression&gt;,&lt;expression&gt;)
  240. <P>
  241. <P>
  242. <P>
  243. <P> <H3>
  244. examples: </H3>
  245. <p><pre><tt>
  246. GegenbauerP(3,2,xx);
  247. 2
  248. 4*xx*(8*xx - 3)
  249. GegenbauerP(3,2,4);
  250. 2000
  251. </tt></pre><p>
  252. <a name=r38_0507>
  253. <title>SolidHarmonicY</title></a>
  254. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  255. E"></p>
  256. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  257. <b>SOLIDHARMONICY</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  258. <P>
  259. <P>
  260. <P>
  261. The <em>SolidHarmonicY</em> operator computes Solid harmonic (Laplace)
  262. polynomials.
  263. <P>
  264. <P>
  265. <P> <H3>
  266. syntax: </H3>
  267. <em>SolidHarmonicY</em>(&lt;integer&gt;,&lt;integer&gt;,
  268. &lt;expression&gt;,&lt;expression&gt;,&lt;expression&gt;,&lt;expression&gt;)
  269. <P>
  270. <P>
  271. <P>
  272. <P>
  273. <P> <H3>
  274. examples: </H3>
  275. <p><pre><tt>
  276. SolidHarmonicY(3,-2,x,y,z,r2);
  277. 2 2
  278. sqrt(105)*z*(-2*i*x*y + x - y )
  279. ---------------------------------
  280. 4*sqrt(pi)*sqrt(2)
  281. </tt></pre><p>
  282. <a name=r38_0508>
  283. <title>SphericalHarmonicY</title></a>
  284. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  285. E"></p>
  286. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  287. <b>SPHERICALHARMONICY</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  288. <P>
  289. <P>
  290. <P>
  291. The <em>SphericalHarmonicY</em> operator computes Spherical harmonic (Laplace)
  292. polynomials. These are special cases of the
  293. solid harmonic polynomials,
  294. <a href=r38_0500.html#r38_0507>SolidHarmonicY</a>.
  295. <P>
  296. <P>
  297. <P> <H3>
  298. syntax: </H3>
  299. <em>SphericalHarmonicY</em>(&lt;integer&gt;,&lt;integer&gt;,
  300. &lt;expression&gt;,&lt;expression&gt;)
  301. <P>
  302. <P>
  303. <P>
  304. <P>
  305. <P> <H3>
  306. examples: </H3>
  307. <p><pre><tt>
  308. SphericalHarmonicY(3,2,theta,phi);
  309. 2 2 2
  310. sqrt(105)*cos(theta)*sin(theta) *(cos(phi) +2*cos(phi)*sin(phi)*i-sin(phi) )
  311. -----------------------------------------------------------------------------
  312. 4*sqrt(pi)*sqrt(2)
  313. </tt></pre><p>
  314. <a name=r38_0509>
  315. <title>Orthogonal Polynomials</title></a>
  316. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  317. E"></p>
  318. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  319. <b>Orthogonal Polynomials</b><menu>
  320. <li><a href=r38_0500.html#r38_0500>ChebyshevT operator</a><P>
  321. <li><a href=r38_0500.html#r38_0501>ChebyshevU operator</a><P>
  322. <li><a href=r38_0500.html#r38_0502>HermiteP operator</a><P>
  323. <li><a href=r38_0500.html#r38_0503>LaguerreP operator</a><P>
  324. <li><a href=r38_0500.html#r38_0504>LegendreP operator</a><P>
  325. <li><a href=r38_0500.html#r38_0505>JacobiP operator</a><P>
  326. <li><a href=r38_0500.html#r38_0506>GegenbauerP operator</a><P>
  327. <li><a href=r38_0500.html#r38_0507>SolidHarmonicY operator</a><P>
  328. <li><a href=r38_0500.html#r38_0508>SphericalHarmonicY operator</a><P>
  329. </menu>
  330. <a name=r38_0510>
  331. <title>Si</title></a>
  332. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  333. E"></p>
  334. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  335. <b>SI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  336. <P>
  337. <P>
  338. <P>
  339. The <em>Si</em> operator returns the Sine Integral function.
  340. <P>
  341. <P>
  342. <P> <H3>
  343. syntax: </H3>
  344. <em>Si</em>(&lt;expression&gt;)
  345. <P>
  346. <P>
  347. <P>
  348. <P> <H3>
  349. examples: </H3>
  350. <p><pre><tt>
  351. limit(Si(x),x,infinity);
  352. pi / 2
  353. on rounded;
  354. Si(0.35);
  355. 0.347626790989
  356. </tt></pre><p>The numeric values for the operator <em>Si</em> are computed via t
  357. he
  358. power series representation, which limits the argument range.
  359. <P>
  360. <P>
  361. <P>
  362. <a name=r38_0511>
  363. <title>Shi</title></a>
  364. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  365. E"></p>
  366. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  367. <b>SHI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  368. <P>
  369. <P>
  370. <P>
  371. The <em>Shi</em> operator returns the hyperbolic Sine Integral function.
  372. <P>
  373. <P>
  374. <P> <H3>
  375. syntax: </H3>
  376. <em>Shi</em>(&lt;expression&gt;)
  377. <P>
  378. <P>
  379. <P>
  380. <P> <H3>
  381. examples: </H3>
  382. <p><pre><tt>
  383. df(shi(x),x);
  384. sinh(x) / x
  385. on rounded;
  386. Shi(0.35);
  387. 0.352390716351
  388. </tt></pre><p>The numeric values for the operator <em>Shi</em> are computed via
  389. the
  390. power series representation, which limits the argument range.
  391. <P>
  392. <P>
  393. <P>
  394. <a name=r38_0512>
  395. <title>s_i</title></a>
  396. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  397. E"></p>
  398. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  399. <b>S_I</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  400. <P>
  401. <P>
  402. <P>
  403. The <em>s_i</em> operator returns the Sine Integral function si.
  404. <P>
  405. <P>
  406. <P> <H3>
  407. syntax: </H3>
  408. <em>s_i</em>(&lt;expression&gt;)
  409. <P>
  410. <P>
  411. <P>
  412. <P> <H3>
  413. examples: </H3>
  414. <p><pre><tt>
  415. s_i(xx);
  416. (2*Si(xx) - pi) / 2
  417. df(s_i(x),x);
  418. sin(x) / x
  419. </tt></pre><p>The operator name <em>s_i</em> is simplified towards
  420. <a href=r38_0500.html#r38_0510>SI</a>.
  421. Since REDUCE is not case sensitive by default the name ``si'' can't be
  422. used.
  423. <P>
  424. <P>
  425. <P>
  426. <a name=r38_0513>
  427. <title>Ci</title></a>
  428. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  429. E"></p>
  430. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  431. <b>CI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  432. <P>
  433. <P>
  434. <P>
  435. The <em>Ci</em> operator returns the Cosine Integral function.
  436. <P>
  437. <P>
  438. <P> <H3>
  439. syntax: </H3>
  440. <em>Ci</em>(&lt;expression&gt;)
  441. <P>
  442. <P>
  443. <P>
  444. <P> <H3>
  445. examples: </H3>
  446. <p><pre><tt>
  447. defint(cos(t)/t,t,x,infinity);
  448. - ci (x)
  449. on rounded;
  450. Ci(0.35);
  451. - 0.50307556932
  452. </tt></pre><p>The numeric values for the operator <em>Ci</em> are computed via t
  453. he
  454. power series representation, which limits the argument range.
  455. <P>
  456. <P>
  457. <P>
  458. <a name=r38_0514>
  459. <title>Chi</title></a>
  460. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  461. E"></p>
  462. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  463. <b>CHI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  464. <P>
  465. <P>
  466. <P>
  467. The <em>Chi</em> operator returns the Hyperbolic Cosine Integral function.
  468. <P>
  469. <P>
  470. <P> <H3>
  471. syntax: </H3>
  472. <em>Chi</em>(&lt;expression&gt;)
  473. <P>
  474. <P>
  475. <P>
  476. <P> <H3>
  477. examples: </H3>
  478. <p><pre><tt>
  479. defint((cosh(t)-1)/t,t,0,x);
  480. - log(x) + psi(1) + chi(x)
  481. on rounded;
  482. Chi(0.35);
  483. - 0.44182471827
  484. </tt></pre><p>The numeric values for the operator <em>Chi</em> are computed via
  485. the
  486. power series representation, which limits the argument range.
  487. <P>
  488. <P>
  489. <P>
  490. <a name=r38_0515>
  491. <title>ERF_extended</title></a>
  492. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  493. E"></p>
  494. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  495. <b>ERF EXTENDED</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  496. <P>
  497. <P>
  498. <P>
  499. The special function package supplies an extended support for the
  500. <a href=r38_0250.html#r38_0255>erf</a> operator which implements the <em>error f
  501. unction</em>
  502. <P>
  503. <P>
  504. defint(e**(-x**2),x,0,infinity) * 2/sqrt(pi)
  505. <P>
  506. <P>
  507. .
  508. <P>
  509. <P>
  510. <P> <H3>
  511. syntax: </H3>
  512. <em>erf</em>(&lt;expression&gt;)
  513. <P>
  514. <P>
  515. <P>
  516. <P> <H3>
  517. examples: </H3>
  518. <p><pre><tt>
  519. erf(-x);
  520. - erf(x)
  521. on rounded;
  522. erf(0.35);
  523. 0.379382053562
  524. </tt></pre><p>The numeric values for the operator <em>erf</em> are computed via
  525. the
  526. power series representation, which limits the argument range.
  527. <P>
  528. <P>
  529. <P>
  530. <a name=r38_0516>
  531. <title>erfc</title></a>
  532. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  533. E"></p>
  534. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  535. <b>ERFC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  536. <P>
  537. <P>
  538. <P>
  539. The <em>erfc</em> operator returns the complementary Error function
  540. <P>
  541. <P>
  542. 1 - defint(e**(-x**2),x,0,infinity) * 2/sqrt(pi)
  543. <P>
  544. <P>
  545. .
  546. <P>
  547. <P>
  548. <P> <H3>
  549. syntax: </H3>
  550. <em>erfc</em>(&lt;expression&gt;)
  551. <P>
  552. <P>
  553. <P>
  554. <P> <H3>
  555. examples: </H3>
  556. <p><pre><tt>
  557. erfc(xx);
  558. - erf(xx) + 1
  559. </tt></pre><p>The operator <em>erfc</em> is simplified towards the
  560. <a href=r38_0250.html#r38_0255>erf</a> operator.
  561. <P>
  562. <P>
  563. <P>
  564. <a name=r38_0517>
  565. <title>Ei</title></a>
  566. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  567. E"></p>
  568. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  569. <b>EI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  570. <P>
  571. <P>
  572. <P>
  573. The <em>Ei</em> operator returns the Exponential Integral function.
  574. <P>
  575. <P>
  576. <P> <H3>
  577. syntax: </H3>
  578. <em>Ei</em>(&lt;expression&gt;)
  579. <P>
  580. <P>
  581. <P>
  582. <P> <H3>
  583. examples: </H3>
  584. <p><pre><tt>
  585. df(ei(x),x);
  586. x
  587. e
  588. ---
  589. x
  590. on rounded;
  591. Ei(0.35);
  592. - 0.0894340019184
  593. </tt></pre><p>The numeric values for the operator <em>Ei</em> are computed via t
  594. he
  595. power series representation, which limits the argument range.
  596. <P>
  597. <P>
  598. <P>
  599. <a name=r38_0518>
  600. <title>Fresnel_C</title></a>
  601. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  602. E"></p>
  603. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  604. <b>FRESNEL_C</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  605. <P>
  606. The <em>Fresnel_C</em> operator represents Fresnel's Cosine function.
  607. <P>
  608. <P>
  609. <P> <H3>
  610. syntax: </H3>
  611. <em>Fresnel_C</em>(&lt;expression&gt;)
  612. <P>
  613. <P>
  614. <P>
  615. <P> <H3>
  616. examples: </H3>
  617. <p><pre><tt>
  618. int(cos(t^2*pi/2),t,0,x);
  619. fresnel_c(x)
  620. on rounded;
  621. fresnel_c(2.1);
  622. 0.581564135061
  623. </tt></pre><p>The operator <em>Fresnel_C</em> has a limited numeric evaluation o
  624. f
  625. large values of its argument.
  626. <P>
  627. <P>
  628. <P>
  629. <a name=r38_0519>
  630. <title>Fresnel_S</title></a>
  631. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  632. E"></p>
  633. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  634. <b>FRESNEL_S</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  635. <P>
  636. The <em>Fresnel_S</em> operator represents Fresnel's Sine Integral function.
  637. <P>
  638. <P>
  639. <P> <H3>
  640. syntax: </H3>
  641. <em>Fresnel_S</em>(&lt;expression&gt;)
  642. <P>
  643. <P>
  644. <P>
  645. <P> <H3>
  646. examples: </H3>
  647. <p><pre><tt>
  648. int(sin(t^2*pi/2),t,0,x);
  649. fresnel_s(x)
  650. on rounded;
  651. fresnel_s(2.1);
  652. 0.374273359378
  653. </tt></pre><p>The operator <em>Fresnel_S</em> has a limited numeric evaluation o
  654. f
  655. large values of its argument.
  656. <P>
  657. <P>
  658. <P>
  659. <a name=r38_0520>
  660. <title>Integral Functions</title></a>
  661. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  662. E"></p>
  663. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  664. <b>Integral Functions</b><menu>
  665. <li><a href=r38_0500.html#r38_0510>Si operator</a><P>
  666. <li><a href=r38_0500.html#r38_0511>Shi operator</a><P>
  667. <li><a href=r38_0500.html#r38_0512>s_i operator</a><P>
  668. <li><a href=r38_0500.html#r38_0513>Ci operator</a><P>
  669. <li><a href=r38_0500.html#r38_0514>Chi operator</a><P>
  670. <li><a href=r38_0500.html#r38_0515>ERF extended operator</a><P>
  671. <li><a href=r38_0500.html#r38_0516>erfc operator</a><P>
  672. <li><a href=r38_0500.html#r38_0517>Ei operator</a><P>
  673. <li><a href=r38_0500.html#r38_0518>Fresnel_C operator</a><P>
  674. <li><a href=r38_0500.html#r38_0519>Fresnel_S operator</a><P>
  675. </menu>
  676. <a name=r38_0521>
  677. <title>BINOMIAL</title></a>
  678. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  679. E"></p>
  680. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  681. <b>BINOMIAL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  682. <P>
  683. The <em>Binomial</em> operator returns the Binomial coefficient if both
  684. parameter are integer and expressions involving the Gamma function otherwise.
  685. <P>
  686. <P>
  687. <P> <H3>
  688. syntax: </H3>
  689. <em>Binomial</em>(&lt;integer&gt;,&lt;integer&gt;)
  690. <P>
  691. <P>
  692. <P>
  693. <P>
  694. <P> <H3>
  695. examples: </H3>
  696. <p><pre><tt>
  697. Binomial(49,6);
  698. 13983816
  699. Binomial(n,3);
  700. gamma(n + 1)
  701. ---------------
  702. 6*gamma(n - 2)
  703. </tt></pre><p>The operator <em>Binomial</em> evaluates the Binomial coefficients
  704. from
  705. the explicit form and therefore it is not the best algorithm if you
  706. want to compute many binomial coefficients with big indices in which
  707. case a recursive algorithm is preferable.
  708. <P>
  709. <P>
  710. <P>
  711. <a name=r38_0522>
  712. <title>STIRLING1</title></a>
  713. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  714. E"></p>
  715. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  716. <b>STIRLING1</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  717. <P>
  718. The <em>Stirling1</em> operator returns the Stirling Numbers S(n,m) of the first
  719. kind, i.e. the number of permutations of n symbols which have exactly m cycles
  720. (divided by (-1)**(n-m)).
  721. <P>
  722. <P>
  723. <P> <H3>
  724. syntax: </H3>
  725. <em>Stirling1</em>(&lt;integer&gt;,&lt;integer&gt;)
  726. <P>
  727. <P>
  728. <P>
  729. <P> <H3>
  730. examples: </H3>
  731. <p><pre><tt>
  732. Stirling1 (17,4);
  733. -87077748875904
  734. Stirling1 (n,n-1);
  735. -gamma(n+1)
  736. -------------
  737. 2*gamma(n-1)
  738. </tt></pre><p>The operator <em>Stirling1</em> evaluates the Stirling numbers of
  739. the
  740. first kind by rulesets for special cases or by a computing the closed
  741. form, which is a series involving the operators
  742. <a href=r38_0500.html#r38_0521>BINOMIAL</a>
  743. and
  744. <a href=r38_0500.html#r38_0523>STIRLING2</a>.
  745. <P>
  746. <P>
  747. <P>
  748. <a name=r38_0523>
  749. <title>STIRLING2</title></a>
  750. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  751. E"></p>
  752. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  753. <b>STIRLING2</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  754. <P>
  755. The <em>Stirling1</em> operator returns the Stirling Numbers S(n,m) of the
  756. second kind, i.e. the number of ways of partitioning a set of n elements
  757. into m non-empty subsets.
  758. <P>
  759. <P>
  760. <P> <H3>
  761. syntax: </H3>
  762. <em>Stirling2</em>(&lt;integer&gt;,&lt;integer&gt;)
  763. <P>
  764. <P>
  765. <P>
  766. <P> <H3>
  767. examples: </H3>
  768. <p><pre><tt>
  769. Stirling2 (17,4);
  770. 694337290
  771. Stirling2 (n,n-1);
  772. gamma(n+1)
  773. -------------
  774. 2*gamma(n-1)
  775. </tt></pre><p>The operator <em>Stirling2</em> evaluates the Stirling numbers of
  776. the
  777. second kind by rulesets for special cases or by a computing the closed
  778. form.
  779. <P>
  780. <P>
  781. <P>
  782. <a name=r38_0524>
  783. <title>Combinatorial Operators</title></a>
  784. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  785. E"></p>
  786. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  787. <b>Combinatorial Operators</b><menu>
  788. <li><a href=r38_0500.html#r38_0521>BINOMIAL operator</a><P>
  789. <li><a href=r38_0500.html#r38_0522>STIRLING1 operator</a><P>
  790. <li><a href=r38_0500.html#r38_0523>STIRLING2 operator</a><P>
  791. </menu>
  792. <a name=r38_0525>
  793. <title>ThreejSymbol</title></a>
  794. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  795. E"></p>
  796. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  797. <b>THREEJSYMBOL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  798. <P>
  799. The <em>ThreejSymbol</em> operator implements the 3j symbol.
  800. <P>
  801. <P>
  802. <P> <H3>
  803. syntax: </H3>
  804. <em>ThreejSymbol</em>(&lt;list of j1,m1&gt;,&lt;list of j2,m2&gt;,
  805. &lt;list of j3,m3&gt;)
  806. <P>
  807. <P>
  808. <P>
  809. <P>
  810. <P> <H3>
  811. examples: </H3>
  812. <p><pre><tt>
  813. ThreejSymbol({j+1,m},{j+1,-m},{1,0});
  814. j
  815. ( - 1) *(abs(j - m + 1) - abs(j + m + 1))
  816. -------------------------------------------
  817. 3 2 m
  818. 2*sqrt(2*j + 9*j + 13*j + 6)*( - 1)
  819. </tt></pre><p>
  820. <a name=r38_0526>
  821. <title>Clebsch_Gordan</title></a>
  822. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  823. E"></p>
  824. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  825. <b>CLEBSCH_GORDAN</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  826. <P>
  827. The <em>Clebsch_Gordan</em> operator implements the Clebsch_Gordan
  828. coefficients. This is closely related to the
  829. <a href=r38_0500.html#r38_0525>Threejsymbol</a>.
  830. <P>
  831. <P>
  832. <P> <H3>
  833. syntax: </H3>
  834. <em>Clebsch_Gordan</em>(&lt;list of j1,m1&gt;,&lt;list of j2,m2&gt;,
  835. &lt;list of j3,m3&gt;)
  836. <P>
  837. <P>
  838. <P>
  839. <P>
  840. <P> <H3>
  841. examples: </H3>
  842. <p><pre><tt>
  843. Clebsch_Gordan({2,0},{2,0},{2,0});
  844. -2
  845. ---------
  846. sqrt(14)
  847. </tt></pre><p>
  848. <a name=r38_0527>
  849. <title>SixjSymbol</title></a>
  850. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  851. E"></p>
  852. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  853. <b>SIXJSYMBOL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  854. <P>
  855. The <em>SixjSymbol</em> operator implements the 6j symbol.
  856. <P> <H3>
  857. syntax: </H3>
  858. <P>
  859. <P>
  860. <em>SixjSymbol</em>(&lt;list of j1,j2,j3&gt;,&lt;list of l1,l2,l3&gt;)
  861. <P>
  862. <P>
  863. <P>
  864. <P>
  865. <P> <H3>
  866. examples: </H3>
  867. <p><pre><tt>
  868. SixjSymbol({7,6,3},{2,4,6});
  869. 1
  870. -------------
  871. 14*sqrt(858)
  872. </tt></pre><p>The operator <em>SixjSymbol</em> uses the
  873. <a href=r38_0650.html#r38_0654>ineq</a> package in order
  874. to find minima and maxima for the summation index.
  875. <P>
  876. <P>
  877. <P>
  878. <a name=r38_0528>
  879. <title>3j and 6j symbols</title></a>
  880. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  881. E"></p>
  882. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  883. <b>3j and 6j symbols</b><menu>
  884. <li><a href=r38_0500.html#r38_0525>ThreejSymbol operator</a><P>
  885. <li><a href=r38_0500.html#r38_0526>Clebsch_Gordan operator</a><P>
  886. <li><a href=r38_0500.html#r38_0527>SixjSymbol operator</a><P>
  887. </menu>
  888. <a name=r38_0529>
  889. <title>HYPERGEOMETRIC</title></a>
  890. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  891. E"></p>
  892. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  893. <b>HYPERGEOMETRIC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  894. <P>
  895. <P>
  896. <P>
  897. The <em>Hypergeometric</em> operator provides simplifications for the
  898. generalized hypergeometric functions.
  899. The <em>Hypergeometric</em> operator is included in the package specfn2.
  900. <P>
  901. <P>
  902. <P> <H3>
  903. syntax: </H3>
  904. <em>hypergeometric</em>(&lt;list of parameters&gt;,&lt;list of parameters&gt;,
  905. &lt;argument&gt;)
  906. <P>
  907. <P>
  908. <P>
  909. <P> <H3>
  910. examples: </H3>
  911. <p><pre><tt>
  912. load specfn2;
  913. hypergeometric ({1/2,1},{3/2},-x^2);
  914. atan(x)
  915. --------
  916. x
  917. hypergeometric ({},{},z);
  918. z
  919. e
  920. </tt></pre><p>The special case where the length of the first list is equal to 2
  921. and
  922. the length of the second list is equal to 1 is often called
  923. ``the hypergeometric function'' (notated as 2F1(a1,a2,b;x)).
  924. <P>
  925. <P>
  926. <P>
  927. <a name=r38_0530>
  928. <title>MeijerG</title></a>
  929. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  930. E"></p>
  931. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  932. <b>MEIJERG</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  933. <P>
  934. The <em>MeijerG</em> operator provides simplifications for Meijer's G
  935. function. The simplifications are performed towards polynomials,
  936. elementary or
  937. special functions or (generalized)
  938. <a href=r38_0500.html#r38_0529>hypergeometric</a> functions.
  939. <P>
  940. <P>
  941. The <em>MeijerG</em> operator is included in the package specfn2.
  942. <P>
  943. <P>
  944. <P> <H3>
  945. syntax: </H3>
  946. <em>MeijerG</em>(&lt;list of parameters&gt;,&lt;list of parameters&gt;,
  947. &lt;argument&gt;)
  948. <P>
  949. <P>
  950. <P>
  951. The first element of the lists has to be the list containing the
  952. first group (mostly called ``m'' and ``n'') of parameters. This passes
  953. the four parameters of a Meijer's G function implicitly via the
  954. length of the lists.
  955. <P>
  956. <P>
  957. <P> <H3>
  958. examples: </H3>
  959. <p><pre><tt>
  960. load specfn2;
  961. MeijerG({{},1},{{0}},x);
  962. heaviside(-x+1)
  963. MeijerG({{}},{{1+1/4},1-1/4},(x^2)/4) * sqrt pi;
  964. 2
  965. sqrt(2)*sin(x)*x
  966. ------------------
  967. 4*sqrt(x)
  968. </tt></pre><p>Many well-known functions can be written as G functions,
  969. e.g. exponentials, logarithms, trigonometric functions, Bessel functions
  970. and hypergeometric functions.
  971. The formulae can be found e.g. in
  972. <P>
  973. <P>
  974. A.P.Prudnikov, Yu.A.Brychkov, O.I.Marichev:
  975. Integrals and Series, Volume 3: More special functions,
  976. Gordon and Breach Science Publishers (1990).
  977. <P>
  978. <P>
  979. <P>
  980. <a name=r38_0531>
  981. <title>Heaviside</title></a>
  982. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  983. E"></p>
  984. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  985. <b>HEAVISIDE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  986. <P>
  987. <P>
  988. <P>
  989. The <em>Heaviside</em> operator returns the Heaviside function.
  990. <P>
  991. <P>
  992. Heaviside(~w) =&gt; if (w &lt;0) then 0 else 1
  993. <P>
  994. <P>
  995. when numberp w;
  996. <P>
  997. <P>
  998. <P> <H3>
  999. syntax: </H3>
  1000. <em>Heaviside</em>(&lt;argument&gt;)
  1001. <P>
  1002. <P>
  1003. <P>
  1004. This operator is often included in the result of the simplification
  1005. of a generalized
  1006. <a href=r38_0500.html#r38_0529>hypergeometric</a> function or a
  1007. <a href=r38_0500.html#r38_0530>MeijerG</a> function.
  1008. <P>
  1009. <P>
  1010. No simplification is done for this function.
  1011. <P>
  1012. <P>
  1013. <P>
  1014. <a name=r38_0532>
  1015. <title>erfi</title></a>
  1016. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1017. E"></p>
  1018. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1019. <b>ERFI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1020. <P>
  1021. <P>
  1022. <P>
  1023. The <em>erfi</em> operator returns the error function of an imaginary argument.
  1024. <P>
  1025. <P>
  1026. erfi(~x) =&gt; 2/sqrt(pi) * defint(e**(t**2),t,0,x);
  1027. <P>
  1028. <P>
  1029. <P> <H3>
  1030. syntax: </H3>
  1031. <em>erfi</em>(&lt;argument&gt;)
  1032. <P>
  1033. <P>
  1034. <P>
  1035. This operator is sometimes included in the result of the simplification
  1036. of a generalized
  1037. <a href=r38_0500.html#r38_0529>hypergeometric</a> function or a
  1038. <a href=r38_0500.html#r38_0530>MeijerG</a> function.
  1039. <P>
  1040. <P>
  1041. No simplification is done for this function.
  1042. <P>
  1043. <P>
  1044. <P>
  1045. <a name=r38_0533>
  1046. <title>Miscellaneous</title></a>
  1047. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1048. E"></p>
  1049. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1050. <b>Miscellaneous</b><menu>
  1051. <li><a href=r38_0500.html#r38_0529>HYPERGEOMETRIC operator</a><P>
  1052. <li><a href=r38_0500.html#r38_0530>MeijerG operator</a><P>
  1053. <li><a href=r38_0500.html#r38_0531>Heaviside operator</a><P>
  1054. <li><a href=r38_0500.html#r38_0532>erfi operator</a><P>
  1055. </menu>
  1056. <a name=r38_0534>
  1057. <title>Special Functions</title></a>
  1058. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1059. E"></p>
  1060. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1061. <b>Special Functions</b><menu>
  1062. <li><a href=r38_0400.html#r38_0444>Special Function Package introduction</a><P>
  1063. <li><a href=r38_0400.html#r38_0445>Constants concept</a><P>
  1064. <li><a href=r38_0450.html#r38_0451>Bernoulli Euler Zeta</a><P>
  1065. <li><a href=r38_0450.html#r38_0463>Bessel Functions</a><P>
  1066. <li><a href=r38_0450.html#r38_0468>Airy Functions</a><P>
  1067. <li><a href=r38_0450.html#r38_0490>Jacobi's Elliptic Functions and Elliptic Inte
  1068. grals</a><P>
  1069. <li><a href=r38_0450.html#r38_0496>Gamma and Related Functions</a><P>
  1070. <li><a href=r38_0450.html#r38_0499>Miscellaneous Functions</a><P>
  1071. <li><a href=r38_0500.html#r38_0509>Orthogonal Polynomials</a><P>
  1072. <li><a href=r38_0500.html#r38_0520>Integral Functions</a><P>
  1073. <li><a href=r38_0500.html#r38_0524>Combinatorial Operators</a><P>
  1074. <li><a href=r38_0500.html#r38_0528>3j and 6j symbols</a><P>
  1075. <li><a href=r38_0500.html#r38_0533>Miscellaneous</a><P>
  1076. </menu>
  1077. <a name=r38_0535>
  1078. <title>TAYLOR_introduction</title></a>
  1079. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1080. E"></p>
  1081. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1082. <b>TAYLOR</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>introduction</b><P>
  1083. <P>
  1084. This short note describes a package of REDUCE procedures that allow
  1085. Taylor expansion in one or more variables and efficient manipulation
  1086. of the resulting Taylor series. Capabilities include basic operations
  1087. (addition, subtraction, multiplication and division) and also
  1088. application of certain algebraic and transcendental functions. To a
  1089. certain extent, Laurent expansion can be performed as well.
  1090. <P>
  1091. <P>
  1092. <a name=r38_0536>
  1093. <title>taylor</title></a>
  1094. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1095. E"></p>
  1096. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1097. <b>TAYLOR</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1098. <P>
  1099. The <em>taylor</em> operator is used for expanding an expression into a
  1100. Taylor series.
  1101. <P>
  1102. <P>
  1103. <P> <H3>
  1104. syntax: </H3>
  1105. <em>taylor</em>(&lt;expression&gt;
  1106. <em>,</em>&lt;var&gt;<em>,</em>
  1107. &lt;expression&gt;<em>,</em>&lt;number&gt;
  1108. <P>
  1109. <P>
  1110. {<em>,</em>&lt;var&gt;<em>,</em>
  1111. &lt;expression&gt;<em>,</em>&lt;number&gt;}*)
  1112. <P>
  1113. <P>
  1114. <P>
  1115. &lt;expression&gt; can be any valid REDUCE algebraic expression.
  1116. &lt;var&gt; must be a
  1117. <a href=r38_0001.html#r38_0002>kernel</a>, and is the expansion
  1118. variable. The &lt;expression&gt; following it denotes the point
  1119. about which the expansion is to take place. &lt;number&gt; must be a
  1120. non-negative integer and denotes the maximum expansion order. If
  1121. more than one triple is specified <em>taylor</em> will expand its
  1122. first argument independently with respect to all the variables.
  1123. Note that once the expansion has been done it is not possible to
  1124. calculate higher orders.
  1125. <P>
  1126. <P>
  1127. Instead of a
  1128. <a href=r38_0001.html#r38_0002>kernel</a>, &lt;var&gt; may also be a list of
  1129. kernels. In this case expansion will take place in a way so that
  1130. the sum/ of the degrees of the kernels does not exceed the
  1131. maximum expansion order. If the expansion point evaluates to the
  1132. special identifier <em>infinity</em>, <em>taylor</em> tries to expand in
  1133. a series in 1/&lt;var&gt;.
  1134. <P>
  1135. <P>
  1136. The expansion is performed variable per variable, i.e. in the
  1137. example above by first expanding
  1138. exp(x^2+y^2)
  1139. with respect to
  1140. <em>x</em> and then expanding every coefficient with respect to <em>y</em>.
  1141. <P>
  1142. <P>
  1143. <P> <H3>
  1144. examples: </H3>
  1145. <p><pre><tt>
  1146. taylor(e^(x^2+y^2),x,0,2,y,0,2);
  1147. 2 2 2 2 2 2
  1148. 1 + Y + X + Y *X + O(X ,Y )
  1149. taylor(e^(x^2+y^2),{x,y},0,2);
  1150. 2 2 2 2
  1151. 1 + Y + X + O({X ,Y })
  1152. </tt></pre><p>The following example shows the case of a non-analytical function.
  1153. <p><pre><tt>
  1154. taylor(x*y/(x+y),x,0,2,y,0,2);
  1155. ***** Not a unit in argument to QUOTTAYLOR
  1156. </tt></pre><p>
  1157. <P>
  1158. <P>
  1159. Note that it is not generally possible to apply the standard
  1160. reduce operators to a Taylor kernel. For example,
  1161. <a href=r38_0150.html#r38_0169>part</a>,
  1162. <a href=r38_0100.html#r38_0141>coeff</a>, or
  1163. <a href=r38_0100.html#r38_0142>coeffn</a> cannot be used. Instead, the
  1164. expression at hand has to be converted to standard form first
  1165. using the
  1166. <a href=r38_0500.html#r38_0547>taylortostandard</a> operator.
  1167. <P>
  1168. <P>
  1169. Differentiation of a Taylor expression is possible. If you
  1170. differentiate with respect to one of the Taylor variables the
  1171. order will decrease by one.
  1172. <P>
  1173. <P>
  1174. Substitution is a bit restricted: Taylor variables can only be
  1175. replaced by other kernels. There is one exception to this rule:
  1176. you can always substitute a Taylor variable by an expression that
  1177. evaluates to a constant. Note that REDUCE will not always be able
  1178. to determine that an expression is constant: an example is
  1179. sin(acos(4)).
  1180. <P>
  1181. <P>
  1182. Only simple taylor kernels can be integrated. More complicated
  1183. expressions that contain Taylor kernels as parts of themselves are
  1184. automatically converted into a standard representation by means of
  1185. the
  1186. <a href=r38_0500.html#r38_0547>taylortostandard</a> operator. In this case a sui
  1187. table
  1188. warning is printed.
  1189. <P>
  1190. <P>
  1191. <P>
  1192. <P>
  1193. <a name=r38_0537>
  1194. <title>taylorautocombine</title></a>
  1195. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1196. E"></p>
  1197. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1198. <b>TAYLORAUTOCOMBINE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>switch</b><P>
  1199. <P>
  1200. If you set <em>taylorautocombine</em> to <em>on</em>, REDUCE
  1201. automatically combines Taylor expressions during the simplification
  1202. process. This is equivalent to applying
  1203. <a href=r38_0500.html#r38_0539>taylorcombine</a> to
  1204. every expression that contains Taylor kernels. Default is
  1205. <em>on</em>.
  1206. <P>
  1207. <P>
  1208. <a name=r38_0538>
  1209. <title>taylorautoexpand</title></a>
  1210. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1211. E"></p>
  1212. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1213. <b>TAYLORAUTOEXPAND</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>switch</b><P>
  1214. <P>
  1215. <em>taylorautoexpand</em> makes Taylor expressions ``contagious'' in
  1216. the sense that
  1217. <a href=r38_0500.html#r38_0539>taylorcombine</a> tries to Taylor expand all
  1218. non-Taylor subexpressions and to combine the result with the rest.
  1219. Default is <em>off</em>.
  1220. <P>
  1221. <P>
  1222. <a name=r38_0539>
  1223. <title>taylorcombine</title></a>
  1224. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1225. E"></p>
  1226. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1227. <b>TAYLORCOMBINE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1228. <P>
  1229. This operator tries to combine all Taylor kernels found in its
  1230. argument into one. Operations currently possible are:
  1231. <P>
  1232. <P>
  1233. _ _ _ Addition, subtraction, multiplication, and division.
  1234. <P>
  1235. _ _ _ Roots, exponentials, and logarithms.
  1236. <P>
  1237. _ _ _ Trigonometric and hyperbolic functions and their inverses.
  1238. <P>
  1239. <P>
  1240. <P> <H3>
  1241. examples: </H3>
  1242. <p><pre><tt>
  1243. hugo := taylor(exp(x),x,0,2);
  1244. 1 2 3
  1245. HUGO := 1 + X + -*X + O(X )
  1246. 2
  1247. taylorcombine log hugo;
  1248. 3
  1249. X + O(X )
  1250. taylorcombine(hugo + x);
  1251. 1 2 3
  1252. (1 + X + -*X + O(X )) + X
  1253. 2
  1254. on taylorautoexpand;
  1255. taylorcombine(hugo + x);
  1256. 1 2 3
  1257. 1 + 2*X + -*X + O(X )
  1258. 2
  1259. </tt></pre><p>Application of unary operators like <em>log</em> and <em>atan</em>
  1260. will nearly always succeed. For binary operations their arguments
  1261. have to be Taylor kernels with the same template. This means that
  1262. the expansion variable and the expansion point must match.
  1263. Expansion order is not so important, different order usually means
  1264. that one of them is truncated before doing the operation.
  1265. <P>
  1266. <P>
  1267. If
  1268. <a href=r38_0500.html#r38_0540>taylorkeeporiginal</a> is set to <em>on</em> and
  1269. if all
  1270. Taylor kernels in its argument have their original expressions
  1271. kept <em>taylorcombine</em> will also combine these and store the
  1272. result as the original expression of the resulting Taylor kernel.
  1273. There is also the switch
  1274. <a href=r38_0500.html#r38_0538>taylorautoexpand</a>.
  1275. <P>
  1276. <P>
  1277. There are a few restrictions to avoid mathematically undefined
  1278. expressions: it is not possible to take the logarithm of a Taylor
  1279. kernel which has no terms (i.e. is zero), or to divide by such a
  1280. beast. There are some provisions made to detect singularities
  1281. during expansion: poles that arise because the denominator has
  1282. zeros at the expansion point are detected and properly treated,
  1283. i.e. the Taylor kernel will start with a negative power. (This
  1284. is accomplished by expanding numerator and denominator separately
  1285. and combining the results.) Essential singularities of the known
  1286. functions (see above) are handled correctly.
  1287. <P>
  1288. <P>
  1289. <P>
  1290. <a name=r38_0540>
  1291. <title>taylorkeeporiginal</title></a>
  1292. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1293. E"></p>
  1294. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1295. <b>TAYLORKEEPORIGINAL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>switch</b><P>
  1296. <P>
  1297. <em>taylorkeeporiginal</em>, if set to <em>on</em>, forces the
  1298. <a href=r38_0500.html#r38_0536>taylor</a> and all Taylor kernel manipulation ope
  1299. rators to
  1300. keep the original expression, i.e. the expression that was Taylor
  1301. expanded. All operations performed on the Taylor kernels are also
  1302. applied to this expression which can be recovered using the operator
  1303. <a href=r38_0500.html#r38_0541>taylororiginal</a>. Default is <em>off</em>.
  1304. <P>
  1305. <P>
  1306. <a name=r38_0541>
  1307. <title>taylororiginal</title></a>
  1308. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1309. E"></p>
  1310. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1311. <b>TAYLORORIGINAL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1312. <P>
  1313. Recovers the original expression (the one that was expanded) from
  1314. the Taylor kernel that is given as its argument.
  1315. <P>
  1316. <P>
  1317. <P> <H3>
  1318. syntax: </H3>
  1319. <em>taylororiginal</em>(&lt;expression&gt;) or
  1320. <em>taylororiginal</em> &lt;simple_expression&gt;
  1321. <P>
  1322. <P>
  1323. <P>
  1324. <P> <H3>
  1325. examples: </H3>
  1326. <p><pre><tt>
  1327. hugo := taylor(exp(x),x,0,2);
  1328. 1 2 3
  1329. HUGO := 1 + X + -*X + O(X )
  1330. 2
  1331. taylororiginal hugo;
  1332. ***** Taylor kernel doesn't have an original part in TAYLORORIGINAL
  1333. on taylorkeeporiginal;
  1334. hugo := taylor(exp(x),x,0,2);
  1335. 1 2 3
  1336. HUGO := 1 + X + -*X + O(X )
  1337. 2
  1338. taylororiginal hugo;
  1339. X
  1340. E
  1341. </tt></pre><p>An error is signalled if the argument is not a Taylor kernel or if
  1342. the original expression was not kept, i.e. if
  1343. <a href=r38_0500.html#r38_0540>taylorkeeporiginal</a> was set <em>off</em> durin
  1344. g expansion.
  1345. <P>
  1346. <P>
  1347. <P>
  1348. <a name=r38_0542>
  1349. <title>taylorprintorder</title></a>
  1350. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1351. E"></p>
  1352. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1353. <b>TAYLORPRINTORDER</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>switch</b><P>
  1354. <P>
  1355. <em>taylorprintorder</em>, if set to <em>on</em>, causes the remainder
  1356. to be printed in big-O notation. Otherwise, three dots are printed.
  1357. Default is <em>on</em>.
  1358. <P>
  1359. <P>
  1360. <a name=r38_0543>
  1361. <title>taylorprintterms</title></a>
  1362. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1363. E"></p>
  1364. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1365. <b>TAYLORPRINTTERMS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>variable</b><P>
  1366. <P>
  1367. Only a certain number of (non-zero) coefficients are printed. If
  1368. there are more, an expression of the form <em>n terms</em> is printed
  1369. to indicate how many non-zero terms have been suppressed. The
  1370. number of terms printed is given by the value of the shared
  1371. algebraic variable <em>taylorprintterms</em>. Allowed values are
  1372. integers and the special identifier <em>all</em>. The latter setting
  1373. specifies that all terms are to be printed. The default setting is
  1374. 5.
  1375. <P>
  1376. <P>
  1377. <P> <H3>
  1378. examples: </H3>
  1379. <p><pre><tt>
  1380. taylor(e^(x^2+y^2),x,0,4,y,0,4);
  1381. 2 1 4 2 2 2 5 5
  1382. 1 + Y + -*Y + X + Y *X + (4 terms) + O(X ,Y )
  1383. 2
  1384. taylorprintterms := all;
  1385. TAYLORPRINTTERMS := ALL
  1386. taylor(e^(x^2+y^2),x,0,4,y,0,4);
  1387. 2 1 4 2 2 2 1 4 2 1 4 1 2 4
  1388. 1 + Y + -*Y + X + Y *X + -*Y *X + -*X + -*Y *X
  1389. 2 2 2 2
  1390. 1 4 4 5 5
  1391. + -*Y *X + O(X ,Y )
  1392. 4
  1393. </tt></pre><p>
  1394. <a name=r38_0544>
  1395. <title>taylorrevert</title></a>
  1396. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1397. E"></p>
  1398. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1399. <b>TAYLORREVERT</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1400. <P>
  1401. <em>taylorrevert</em> allows reversion of a Taylor series of a
  1402. function f, i.e., to compute the first terms of the expansion of the
  1403. inverse of f from the expansion of f.
  1404. <P>
  1405. <P>
  1406. <P> <H3>
  1407. syntax: </H3>
  1408. <em>taylorrevert</em>(&lt;expression&gt;<em>,</em>
  1409. &lt;var&gt;<em>,</em>&lt;var&gt;)
  1410. <P>
  1411. <P>
  1412. <P>
  1413. The first argument must evaluate to a Taylor kernel with the second
  1414. argument being one of its expansion variables.
  1415. <P>
  1416. <P>
  1417. <P> <H3>
  1418. examples: </H3>
  1419. <p><pre><tt>
  1420. taylor(u - u**2,u,0,5);
  1421. 2 6
  1422. U - U + O(U )
  1423. taylorrevert (ws,u,x);
  1424. 2 3 4 5 6
  1425. X + X + 2*X + 5*X + 14*X + O(X )
  1426. </tt></pre><p>
  1427. <a name=r38_0545>
  1428. <title>taylorseriesp</title></a>
  1429. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1430. E"></p>
  1431. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1432. <b>TAYLORSERIESP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1433. <P>
  1434. This operator may be used to determine if its argument is a Taylor
  1435. kernel.
  1436. <P>
  1437. <P>
  1438. <P> <H3>
  1439. syntax: </H3>
  1440. <em>taylorseriesp</em>(&lt;expression&gt;) or <em>taylorseriesp</em>
  1441. &lt;simple_expression&gt;
  1442. <P>
  1443. <P>
  1444. <P>
  1445. <P> <H3>
  1446. examples: </H3>
  1447. <p><pre><tt>
  1448. hugo := taylor(exp(x),x,0,2);
  1449. 1 2 3
  1450. HUGO := 1 + X + -*X + O(X )
  1451. 2
  1452. if taylorseriesp hugo then OK;
  1453. OK
  1454. if taylorseriesp(hugo + y) then OK else NO;
  1455. NO
  1456. </tt></pre><p>Note that this operator is subject to the same restrictions as,
  1457. e.g., <em>ordp</em> or <em>numberp</em>, i.e. it may only be used in
  1458. boolean expressions in <em>if</em> or <em>let</em> statements.
  1459. <P>
  1460. <P>
  1461. <P>
  1462. <a name=r38_0546>
  1463. <title>taylortemplate</title></a>
  1464. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1465. E"></p>
  1466. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1467. <b>TAYLORTEMPLATE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1468. <P>
  1469. The template of a Taylor kernel, i.e. the list of all variables
  1470. with respect to which expansion took place together with expansion
  1471. point and order can be extracted using
  1472. <P>
  1473. <P>
  1474. <P> <H3>
  1475. syntax: </H3>
  1476. <em>taylortemplate</em>(&lt;expression&gt;) or
  1477. <em>taylortemplate</em> &lt;simple_expression&gt;
  1478. <P>
  1479. <P>
  1480. <P>
  1481. This returns a list of lists with the three elements
  1482. (VAR,VAR0,ORDER). An error is signalled if the argument is not a
  1483. Taylor kernel.
  1484. <P>
  1485. <P>
  1486. <P> <H3>
  1487. examples: </H3>
  1488. <p><pre><tt>
  1489. hugo := taylor(exp(x),x,0,2);
  1490. 1 2 3
  1491. HUGO := 1 + X + -*X + O(X )
  1492. 2
  1493. taylortemplate hugo;
  1494. {{X,0,2}}
  1495. </tt></pre><p>
  1496. <a name=r38_0547>
  1497. <title>taylortostandard</title></a>
  1498. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1499. E"></p>
  1500. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1501. <b>TAYLORTOSTANDARD</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
  1502. <P>
  1503. This operator converts all Taylor kernels in its argument into
  1504. standard form and resimplifies the result.
  1505. <P>
  1506. <P>
  1507. <P> <H3>
  1508. syntax: </H3>
  1509. <em>taylortostandard</em>(&lt;expression&gt;) or
  1510. <em>taylortostandard</em> &lt;simple_expression&gt;
  1511. <P>
  1512. <P>
  1513. <P>
  1514. <P> <H3>
  1515. examples: </H3>
  1516. <p><pre><tt>
  1517. hugo := taylor(exp(x),x,0,2);
  1518. 1 2 3
  1519. HUGO := 1 + X + -*X + O(X )
  1520. 2
  1521. taylortostandard hugo;
  1522. 2
  1523. X + 2*X + 2
  1524. ------------
  1525. 2
  1526. </tt></pre><p><P>
  1527. <a name=r38_0548>
  1528. <title>Taylor series</title></a>
  1529. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1530. E"></p>
  1531. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1532. <b>Taylor series</b><menu>
  1533. <li><a href=r38_0500.html#r38_0535>TAYLOR introduction</a><P>
  1534. <li><a href=r38_0500.html#r38_0536>taylor operator</a><P>
  1535. <li><a href=r38_0500.html#r38_0537>taylorautocombine switch</a><P>
  1536. <li><a href=r38_0500.html#r38_0538>taylorautoexpand switch</a><P>
  1537. <li><a href=r38_0500.html#r38_0539>taylorcombine operator</a><P>
  1538. <li><a href=r38_0500.html#r38_0540>taylorkeeporiginal switch</a><P>
  1539. <li><a href=r38_0500.html#r38_0541>taylororiginal operator</a><P>
  1540. <li><a href=r38_0500.html#r38_0542>taylorprintorder switch</a><P>
  1541. <li><a href=r38_0500.html#r38_0543>taylorprintterms variable</a><P>
  1542. <li><a href=r38_0500.html#r38_0544>taylorrevert operator</a><P>
  1543. <li><a href=r38_0500.html#r38_0545>taylorseriesp operator</a><P>
  1544. <li><a href=r38_0500.html#r38_0546>taylortemplate operator</a><P>
  1545. <li><a href=r38_0500.html#r38_0547>taylortostandard operator</a><P>
  1546. </menu>
  1547. <a name=r38_0549>
  1548. <title>GNUPLOT_and_REDUCE</title></a>
  1549. <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
  1550. E"></p>
  1551. <b><a href=r38_idx.html>INDEX</a></b><p><p>
  1552. <b>GNUPLOT AND REDUCE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>introduction</b><P>
  1553. <P>
  1554. <P>
  1555. <P>
  1556. The GNUPLOT system provides easy to use graphics output
  1557. for curves or surfaces which are defined by
  1558. formulas and/or data sets. GNUPLOT supports
  1559. a great variety of output devices
  1560. such as X-windows, VGA screen, postscript, picTeX.
  1561. The REDUCE GNUPLOT package lets one use the GNUPLOT
  1562. graphical output directly from inside REDUCE, either for
  1563. the interactive display of curves/surfaces or for the production
  1564. of pictures on paper.
  1565. <P>
  1566. <P>
  1567. Note that this package may not be supported on all system
  1568. platforms.
  1569. <P>
  1570. <P>
  1571. For a detailed description you should read the GNUPLOT
  1572. system documentation, available together with the GNUPLOT
  1573. installation material from several servers by anonymous FTP.
  1574. <P>
  1575. <P>
  1576. The REDUCE developers thank the GNUPLOT people for their permission
  1577. to distribute GNUPLOT together with REDUCE.
  1578. <P>
  1579. <P>