1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062 |
- <a name=r38_0500>
- <title>ChebyshevT</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>CHEBYSHEVT</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>ChebyshevT</em> operator computes the nth Chebyshev T Polynomial (of the
-
- first kind).
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>ChebyshevT</em>(<integer>,<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- ChebyshevT(3,xx);
- 2
- xx*(4*xx - 3)
- ChebyshevT(3,4);
- 244
- </tt></pre><p>Chebyshev's T polynomials are computed using the recurrence relati
- on:
- <P>
- <P>
- ChebyshevT(n,x) := 2x*ChebyshevT(n-1,x) - ChebyshevT(n-2,x) with
- <P>
- <P>
- ChebyshevT(0,x) := 0 and ChebyshevT(1,x) := x
- <P>
- <P>
- <P>
- <a name=r38_0501>
- <title>ChebyshevU</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>CHEBYSHEVU</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>ChebyshevU</em> operator returns the nth Chebyshev U Polynomial (of the
- second kind).
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>ChebyshevU</em>(<integer>,<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- ChebyshevU(3,xx);
- 2
- 4*x*(2*x - 1)
- ChebyshevU(3,4);
- 496
- </tt></pre><p>Chebyshev's U polynomials are computed using the recurrence relati
- on:
- <P>
- <P>
- ChebyshevU(n,x) := 2x*ChebyshevU(n-1,x) - ChebyshevU(n-2,x) with
- <P>
- <P>
- ChebyshevU(0,x) := 0 and ChebyshevU(1,x) := 2x
- <P>
- <P>
- <P>
- <P>
- <a name=r38_0502>
- <title>HermiteP</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>HERMITEP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>HermiteP</em> operator returns the nth Hermite Polynomial.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>HermiteP</em>(<integer>,<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- HermiteP(3,xx);
- 2
- 4*xx*(2*xx - 3)
- HermiteP(3,4);
- 464
- </tt></pre><p>Hermite polynomials are computed using the recurrence relation:
- <P>
- <P>
- HermiteP(n,x) := 2x*HermiteP(n-1,x) - 2*(n-1)*HermiteP(n-2,x) with
- <P>
- <P>
- HermiteP(0,x) := 1 and HermiteP(1,x) := 2x
- <P>
- <P>
- <P>
- <P>
- <a name=r38_0503>
- <title>LaguerreP</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>LAGUERREP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>LaguerreP</em> operator computes the nth Laguerre Polynomial.
- The two argument call of LaguerreP is a (common) abbreviation of
- LaguerreP(n,0,x).
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>LaguerreP</em>(<integer>,<expression>) or
- <P>
- <P>
- <em>LaguerreP</em>(<integer>,<expression>,<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- LaguerreP(3,xx);
- 3 2
- (- xx + 9*xx - 18*xx + 6)/6
- LaguerreP(2,3,4);
- -2
- </tt></pre><p>Laguerre polynomials are computed using the recurrence relation:
- <P>
- <P>
- LaguerreP(n,a,x) := (2n+a-1-x)/n*LaguerreP(n-1,a,x) -
- (n+a-1) * LaguerreP(n-2,a,x) with
- <P>
- <P>
- LaguerreP(0,a,x) := 1 and LaguerreP(2,a,x) := -x+1+a
- <P>
- <P>
- <P>
- <a name=r38_0504>
- <title>LegendreP</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>LEGENDREP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The binary <em>LegendreP</em> operator computes the nth Legendre
- Polynomial which is
- a special case of the nth Jacobi Polynomial with
- <P>
- <P>
- LegendreP(n,x) := JacobiP(n,0,0,x)
- <P>
- <P>
- The ternary form returns the associated Legendre Polynomial (see below).
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>LegendreP</em>(<integer>,<expression>) or
- <P>
- <P>
- <em>LegendreP</em>(<integer>,<expression>,<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- LegendreP(3,xx);
- 2
- xx*(5*xx - 3)
- ----------------
- 2
- LegendreP(3,2,xx);
- 2
- 15*xx*( - xx + 1)
- </tt></pre><p>The ternary form of the operator <em>LegendreP</em> is the associa
- ted
- Legendre Polynomial defined as
- <P>
- <P>
- P(n,m,x) = (-1)**m * (1-x**2)**(m/2) * df(LegendreP(n,x),x,m)
- <P>
- <P>
- <P>
- <a name=r38_0505>
- <title>JacobiP</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>JACOBIP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>JacobiP</em> operator computes the nth Jacobi Polynomial.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>JacobiP</em>(<integer>,<expression>,<expression>,
- <expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- JacobiP(3,4,5,xx);
- 3 2
- 7*(65*xx - 13*xx - 13*xx + 1)
- ----------------------------------
- 8
- JacobiP(3,4,5,6);
- 94465/8
- </tt></pre><p>
- <a name=r38_0506>
- <title>GegenbauerP</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>GEGENBAUERP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>GegenbauerP</em> operator computes Gegenbauer's (ultraspherical)
- polynomials.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>GegenbauerP</em>(<integer>,<expression>,<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- GegenbauerP(3,2,xx);
- 2
- 4*xx*(8*xx - 3)
- GegenbauerP(3,2,4);
- 2000
- </tt></pre><p>
- <a name=r38_0507>
- <title>SolidHarmonicY</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>SOLIDHARMONICY</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>SolidHarmonicY</em> operator computes Solid harmonic (Laplace)
- polynomials.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>SolidHarmonicY</em>(<integer>,<integer>,
- <expression>,<expression>,<expression>,<expression>)
- <P>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- SolidHarmonicY(3,-2,x,y,z,r2);
- 2 2
- sqrt(105)*z*(-2*i*x*y + x - y )
- ---------------------------------
- 4*sqrt(pi)*sqrt(2)
- </tt></pre><p>
- <a name=r38_0508>
- <title>SphericalHarmonicY</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>SPHERICALHARMONICY</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>SphericalHarmonicY</em> operator computes Spherical harmonic (Laplace)
- polynomials. These are special cases of the
- solid harmonic polynomials,
- <a href=r38_0500.html#r38_0507>SolidHarmonicY</a>.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>SphericalHarmonicY</em>(<integer>,<integer>,
- <expression>,<expression>)
- <P>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- SphericalHarmonicY(3,2,theta,phi);
- 2 2 2
- sqrt(105)*cos(theta)*sin(theta) *(cos(phi) +2*cos(phi)*sin(phi)*i-sin(phi) )
- -----------------------------------------------------------------------------
- 4*sqrt(pi)*sqrt(2)
- </tt></pre><p>
- <a name=r38_0509>
- <title>Orthogonal Polynomials</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Orthogonal Polynomials</b><menu>
- <li><a href=r38_0500.html#r38_0500>ChebyshevT operator</a><P>
- <li><a href=r38_0500.html#r38_0501>ChebyshevU operator</a><P>
- <li><a href=r38_0500.html#r38_0502>HermiteP operator</a><P>
- <li><a href=r38_0500.html#r38_0503>LaguerreP operator</a><P>
- <li><a href=r38_0500.html#r38_0504>LegendreP operator</a><P>
- <li><a href=r38_0500.html#r38_0505>JacobiP operator</a><P>
- <li><a href=r38_0500.html#r38_0506>GegenbauerP operator</a><P>
- <li><a href=r38_0500.html#r38_0507>SolidHarmonicY operator</a><P>
- <li><a href=r38_0500.html#r38_0508>SphericalHarmonicY operator</a><P>
- </menu>
- <a name=r38_0510>
- <title>Si</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>SI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>Si</em> operator returns the Sine Integral function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Si</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- limit(Si(x),x,infinity);
- pi / 2
- on rounded;
- Si(0.35);
- 0.347626790989
- </tt></pre><p>The numeric values for the operator <em>Si</em> are computed via t
- he
- power series representation, which limits the argument range.
- <P>
- <P>
- <P>
- <a name=r38_0511>
- <title>Shi</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>SHI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>Shi</em> operator returns the hyperbolic Sine Integral function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Shi</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- df(shi(x),x);
- sinh(x) / x
- on rounded;
- Shi(0.35);
- 0.352390716351
- </tt></pre><p>The numeric values for the operator <em>Shi</em> are computed via
- the
- power series representation, which limits the argument range.
- <P>
- <P>
- <P>
- <a name=r38_0512>
- <title>s_i</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>S_I</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>s_i</em> operator returns the Sine Integral function si.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>s_i</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- s_i(xx);
- (2*Si(xx) - pi) / 2
- df(s_i(x),x);
- sin(x) / x
- </tt></pre><p>The operator name <em>s_i</em> is simplified towards
- <a href=r38_0500.html#r38_0510>SI</a>.
- Since REDUCE is not case sensitive by default the name ``si'' can't be
- used.
- <P>
- <P>
- <P>
- <a name=r38_0513>
- <title>Ci</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>CI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>Ci</em> operator returns the Cosine Integral function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Ci</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- defint(cos(t)/t,t,x,infinity);
- - ci (x)
- on rounded;
- Ci(0.35);
- - 0.50307556932
- </tt></pre><p>The numeric values for the operator <em>Ci</em> are computed via t
- he
- power series representation, which limits the argument range.
- <P>
- <P>
- <P>
- <a name=r38_0514>
- <title>Chi</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>CHI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>Chi</em> operator returns the Hyperbolic Cosine Integral function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Chi</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- defint((cosh(t)-1)/t,t,0,x);
- - log(x) + psi(1) + chi(x)
- on rounded;
- Chi(0.35);
- - 0.44182471827
- </tt></pre><p>The numeric values for the operator <em>Chi</em> are computed via
- the
- power series representation, which limits the argument range.
- <P>
- <P>
- <P>
- <a name=r38_0515>
- <title>ERF_extended</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>ERF EXTENDED</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The special function package supplies an extended support for the
- <a href=r38_0250.html#r38_0255>erf</a> operator which implements the <em>error f
- unction</em>
- <P>
- <P>
- defint(e**(-x**2),x,0,infinity) * 2/sqrt(pi)
- <P>
- <P>
- .
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>erf</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- erf(-x);
- - erf(x)
- on rounded;
- erf(0.35);
- 0.379382053562
- </tt></pre><p>The numeric values for the operator <em>erf</em> are computed via
- the
- power series representation, which limits the argument range.
- <P>
- <P>
- <P>
- <a name=r38_0516>
- <title>erfc</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>ERFC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>erfc</em> operator returns the complementary Error function
- <P>
- <P>
- 1 - defint(e**(-x**2),x,0,infinity) * 2/sqrt(pi)
- <P>
- <P>
- .
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>erfc</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- erfc(xx);
- - erf(xx) + 1
- </tt></pre><p>The operator <em>erfc</em> is simplified towards the
- <a href=r38_0250.html#r38_0255>erf</a> operator.
- <P>
- <P>
- <P>
- <a name=r38_0517>
- <title>Ei</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>EI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>Ei</em> operator returns the Exponential Integral function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Ei</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- df(ei(x),x);
- x
- e
- ---
- x
- on rounded;
- Ei(0.35);
- - 0.0894340019184
- </tt></pre><p>The numeric values for the operator <em>Ei</em> are computed via t
- he
- power series representation, which limits the argument range.
- <P>
- <P>
- <P>
- <a name=r38_0518>
- <title>Fresnel_C</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>FRESNEL_C</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Fresnel_C</em> operator represents Fresnel's Cosine function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Fresnel_C</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- int(cos(t^2*pi/2),t,0,x);
- fresnel_c(x)
- on rounded;
- fresnel_c(2.1);
- 0.581564135061
- </tt></pre><p>The operator <em>Fresnel_C</em> has a limited numeric evaluation o
- f
- large values of its argument.
- <P>
- <P>
- <P>
- <a name=r38_0519>
- <title>Fresnel_S</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>FRESNEL_S</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Fresnel_S</em> operator represents Fresnel's Sine Integral function.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Fresnel_S</em>(<expression>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- int(sin(t^2*pi/2),t,0,x);
- fresnel_s(x)
- on rounded;
- fresnel_s(2.1);
- 0.374273359378
- </tt></pre><p>The operator <em>Fresnel_S</em> has a limited numeric evaluation o
- f
- large values of its argument.
- <P>
- <P>
- <P>
- <a name=r38_0520>
- <title>Integral Functions</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Integral Functions</b><menu>
- <li><a href=r38_0500.html#r38_0510>Si operator</a><P>
- <li><a href=r38_0500.html#r38_0511>Shi operator</a><P>
- <li><a href=r38_0500.html#r38_0512>s_i operator</a><P>
- <li><a href=r38_0500.html#r38_0513>Ci operator</a><P>
- <li><a href=r38_0500.html#r38_0514>Chi operator</a><P>
- <li><a href=r38_0500.html#r38_0515>ERF extended operator</a><P>
- <li><a href=r38_0500.html#r38_0516>erfc operator</a><P>
- <li><a href=r38_0500.html#r38_0517>Ei operator</a><P>
- <li><a href=r38_0500.html#r38_0518>Fresnel_C operator</a><P>
- <li><a href=r38_0500.html#r38_0519>Fresnel_S operator</a><P>
- </menu>
- <a name=r38_0521>
- <title>BINOMIAL</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>BINOMIAL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Binomial</em> operator returns the Binomial coefficient if both
- parameter are integer and expressions involving the Gamma function otherwise.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Binomial</em>(<integer>,<integer>)
- <P>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Binomial(49,6);
- 13983816
- Binomial(n,3);
- gamma(n + 1)
- ---------------
- 6*gamma(n - 2)
- </tt></pre><p>The operator <em>Binomial</em> evaluates the Binomial coefficients
- from
- the explicit form and therefore it is not the best algorithm if you
- want to compute many binomial coefficients with big indices in which
- case a recursive algorithm is preferable.
- <P>
- <P>
- <P>
- <a name=r38_0522>
- <title>STIRLING1</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>STIRLING1</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Stirling1</em> operator returns the Stirling Numbers S(n,m) of the first
-
- kind, i.e. the number of permutations of n symbols which have exactly m cycles
- (divided by (-1)**(n-m)).
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Stirling1</em>(<integer>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Stirling1 (17,4);
- -87077748875904
- Stirling1 (n,n-1);
- -gamma(n+1)
- -------------
- 2*gamma(n-1)
- </tt></pre><p>The operator <em>Stirling1</em> evaluates the Stirling numbers of
- the
- first kind by rulesets for special cases or by a computing the closed
- form, which is a series involving the operators
- <a href=r38_0500.html#r38_0521>BINOMIAL</a>
- and
- <a href=r38_0500.html#r38_0523>STIRLING2</a>.
- <P>
- <P>
- <P>
- <a name=r38_0523>
- <title>STIRLING2</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>STIRLING2</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Stirling1</em> operator returns the Stirling Numbers S(n,m) of the
- second kind, i.e. the number of ways of partitioning a set of n elements
- into m non-empty subsets.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Stirling2</em>(<integer>,<integer>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Stirling2 (17,4);
- 694337290
- Stirling2 (n,n-1);
- gamma(n+1)
- -------------
- 2*gamma(n-1)
- </tt></pre><p>The operator <em>Stirling2</em> evaluates the Stirling numbers of
- the
- second kind by rulesets for special cases or by a computing the closed
- form.
- <P>
- <P>
- <P>
- <a name=r38_0524>
- <title>Combinatorial Operators</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Combinatorial Operators</b><menu>
- <li><a href=r38_0500.html#r38_0521>BINOMIAL operator</a><P>
- <li><a href=r38_0500.html#r38_0522>STIRLING1 operator</a><P>
- <li><a href=r38_0500.html#r38_0523>STIRLING2 operator</a><P>
- </menu>
- <a name=r38_0525>
- <title>ThreejSymbol</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>THREEJSYMBOL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>ThreejSymbol</em> operator implements the 3j symbol.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>ThreejSymbol</em>(<list of j1,m1>,<list of j2,m2>,
- <list of j3,m3>)
- <P>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- ThreejSymbol({j+1,m},{j+1,-m},{1,0});
- j
- ( - 1) *(abs(j - m + 1) - abs(j + m + 1))
- -------------------------------------------
- 3 2 m
- 2*sqrt(2*j + 9*j + 13*j + 6)*( - 1)
- </tt></pre><p>
- <a name=r38_0526>
- <title>Clebsch_Gordan</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>CLEBSCH_GORDAN</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>Clebsch_Gordan</em> operator implements the Clebsch_Gordan
- coefficients. This is closely related to the
- <a href=r38_0500.html#r38_0525>Threejsymbol</a>.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Clebsch_Gordan</em>(<list of j1,m1>,<list of j2,m2>,
- <list of j3,m3>)
- <P>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- Clebsch_Gordan({2,0},{2,0},{2,0});
- -2
- ---------
- sqrt(14)
- </tt></pre><p>
- <a name=r38_0527>
- <title>SixjSymbol</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>SIXJSYMBOL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>SixjSymbol</em> operator implements the 6j symbol.
- <P> <H3>
- syntax: </H3>
- <P>
- <P>
- <em>SixjSymbol</em>(<list of j1,j2,j3>,<list of l1,l2,l3>)
- <P>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- SixjSymbol({7,6,3},{2,4,6});
- 1
- -------------
- 14*sqrt(858)
- </tt></pre><p>The operator <em>SixjSymbol</em> uses the
- <a href=r38_0650.html#r38_0654>ineq</a> package in order
- to find minima and maxima for the summation index.
- <P>
- <P>
- <P>
- <a name=r38_0528>
- <title>3j and 6j symbols</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>3j and 6j symbols</b><menu>
- <li><a href=r38_0500.html#r38_0525>ThreejSymbol operator</a><P>
- <li><a href=r38_0500.html#r38_0526>Clebsch_Gordan operator</a><P>
- <li><a href=r38_0500.html#r38_0527>SixjSymbol operator</a><P>
- </menu>
- <a name=r38_0529>
- <title>HYPERGEOMETRIC</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>HYPERGEOMETRIC</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>Hypergeometric</em> operator provides simplifications for the
- generalized hypergeometric functions.
- The <em>Hypergeometric</em> operator is included in the package specfn2.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>hypergeometric</em>(<list of parameters>,<list of parameters>,
- <argument>)
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- load specfn2;
- hypergeometric ({1/2,1},{3/2},-x^2);
- atan(x)
- --------
- x
- hypergeometric ({},{},z);
- z
- e
- </tt></pre><p>The special case where the length of the first list is equal to 2
- and
- the length of the second list is equal to 1 is often called
- ``the hypergeometric function'' (notated as 2F1(a1,a2,b;x)).
- <P>
- <P>
- <P>
- <a name=r38_0530>
- <title>MeijerG</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>MEIJERG</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>MeijerG</em> operator provides simplifications for Meijer's G
- function. The simplifications are performed towards polynomials,
- elementary or
- special functions or (generalized)
- <a href=r38_0500.html#r38_0529>hypergeometric</a> functions.
- <P>
- <P>
- The <em>MeijerG</em> operator is included in the package specfn2.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>MeijerG</em>(<list of parameters>,<list of parameters>,
- <argument>)
- <P>
- <P>
- <P>
- The first element of the lists has to be the list containing the
- first group (mostly called ``m'' and ``n'') of parameters. This passes
- the four parameters of a Meijer's G function implicitly via the
- length of the lists.
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- load specfn2;
- MeijerG({{},1},{{0}},x);
- heaviside(-x+1)
- MeijerG({{}},{{1+1/4},1-1/4},(x^2)/4) * sqrt pi;
-
- 2
- sqrt(2)*sin(x)*x
- ------------------
- 4*sqrt(x)
- </tt></pre><p>Many well-known functions can be written as G functions,
- e.g. exponentials, logarithms, trigonometric functions, Bessel functions
- and hypergeometric functions.
- The formulae can be found e.g. in
- <P>
- <P>
- A.P.Prudnikov, Yu.A.Brychkov, O.I.Marichev:
- Integrals and Series, Volume 3: More special functions,
- Gordon and Breach Science Publishers (1990).
- <P>
- <P>
- <P>
- <a name=r38_0531>
- <title>Heaviside</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>HEAVISIDE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>Heaviside</em> operator returns the Heaviside function.
- <P>
- <P>
- Heaviside(~w) => if (w <0) then 0 else 1
- <P>
- <P>
- when numberp w;
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>Heaviside</em>(<argument>)
- <P>
- <P>
- <P>
- This operator is often included in the result of the simplification
- of a generalized
- <a href=r38_0500.html#r38_0529>hypergeometric</a> function or a
- <a href=r38_0500.html#r38_0530>MeijerG</a> function.
- <P>
- <P>
- No simplification is done for this function.
- <P>
- <P>
- <P>
- <a name=r38_0532>
- <title>erfi</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>ERFI</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <P>
- <P>
- The <em>erfi</em> operator returns the error function of an imaginary argument.
- <P>
- <P>
- erfi(~x) => 2/sqrt(pi) * defint(e**(t**2),t,0,x);
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>erfi</em>(<argument>)
- <P>
- <P>
- <P>
- This operator is sometimes included in the result of the simplification
- of a generalized
- <a href=r38_0500.html#r38_0529>hypergeometric</a> function or a
- <a href=r38_0500.html#r38_0530>MeijerG</a> function.
- <P>
- <P>
- No simplification is done for this function.
- <P>
- <P>
- <P>
- <a name=r38_0533>
- <title>Miscellaneous</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Miscellaneous</b><menu>
- <li><a href=r38_0500.html#r38_0529>HYPERGEOMETRIC operator</a><P>
- <li><a href=r38_0500.html#r38_0530>MeijerG operator</a><P>
- <li><a href=r38_0500.html#r38_0531>Heaviside operator</a><P>
- <li><a href=r38_0500.html#r38_0532>erfi operator</a><P>
- </menu>
- <a name=r38_0534>
- <title>Special Functions</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Special Functions</b><menu>
- <li><a href=r38_0400.html#r38_0444>Special Function Package introduction</a><P>
- <li><a href=r38_0400.html#r38_0445>Constants concept</a><P>
- <li><a href=r38_0450.html#r38_0451>Bernoulli Euler Zeta</a><P>
- <li><a href=r38_0450.html#r38_0463>Bessel Functions</a><P>
- <li><a href=r38_0450.html#r38_0468>Airy Functions</a><P>
- <li><a href=r38_0450.html#r38_0490>Jacobi's Elliptic Functions and Elliptic Inte
- grals</a><P>
- <li><a href=r38_0450.html#r38_0496>Gamma and Related Functions</a><P>
- <li><a href=r38_0450.html#r38_0499>Miscellaneous Functions</a><P>
- <li><a href=r38_0500.html#r38_0509>Orthogonal Polynomials</a><P>
- <li><a href=r38_0500.html#r38_0520>Integral Functions</a><P>
- <li><a href=r38_0500.html#r38_0524>Combinatorial Operators</a><P>
- <li><a href=r38_0500.html#r38_0528>3j and 6j symbols</a><P>
- <li><a href=r38_0500.html#r38_0533>Miscellaneous</a><P>
- </menu>
- <a name=r38_0535>
- <title>TAYLOR_introduction</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLOR</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>introduction</b><P>
- <P>
-
- This short note describes a package of REDUCE procedures that allow
- Taylor expansion in one or more variables and efficient manipulation
- of the resulting Taylor series. Capabilities include basic operations
- (addition, subtraction, multiplication and division) and also
- application of certain algebraic and transcendental functions. To a
- certain extent, Laurent expansion can be performed as well.
- <P>
- <P>
- <a name=r38_0536>
- <title>taylor</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLOR</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The <em>taylor</em> operator is used for expanding an expression into a
- Taylor series.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>taylor</em>(<expression>
- <em>,</em><var><em>,</em>
- <expression><em>,</em><number>
- <P>
- <P>
- {<em>,</em><var><em>,</em>
- <expression><em>,</em><number>}*)
- <P>
- <P>
- <P>
- <expression> can be any valid REDUCE algebraic expression.
- <var> must be a
- <a href=r38_0001.html#r38_0002>kernel</a>, and is the expansion
- variable. The <expression> following it denotes the point
- about which the expansion is to take place. <number> must be a
- non-negative integer and denotes the maximum expansion order. If
- more than one triple is specified <em>taylor</em> will expand its
- first argument independently with respect to all the variables.
- Note that once the expansion has been done it is not possible to
- calculate higher orders.
- <P>
- <P>
- Instead of a
- <a href=r38_0001.html#r38_0002>kernel</a>, <var> may also be a list of
- kernels. In this case expansion will take place in a way so that
- the sum/ of the degrees of the kernels does not exceed the
- maximum expansion order. If the expansion point evaluates to the
- special identifier <em>infinity</em>, <em>taylor</em> tries to expand in
- a series in 1/<var>.
- <P>
- <P>
- The expansion is performed variable per variable, i.e. in the
- example above by first expanding
- exp(x^2+y^2)
- with respect to
- <em>x</em> and then expanding every coefficient with respect to <em>y</em>.
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- taylor(e^(x^2+y^2),x,0,2,y,0,2);
- 2 2 2 2 2 2
- 1 + Y + X + Y *X + O(X ,Y )
- taylor(e^(x^2+y^2),{x,y},0,2);
- 2 2 2 2
- 1 + Y + X + O({X ,Y })
- </tt></pre><p>The following example shows the case of a non-analytical function.
- <p><pre><tt>
- taylor(x*y/(x+y),x,0,2,y,0,2);
- ***** Not a unit in argument to QUOTTAYLOR
- </tt></pre><p>
- <P>
- <P>
- Note that it is not generally possible to apply the standard
- reduce operators to a Taylor kernel. For example,
- <a href=r38_0150.html#r38_0169>part</a>,
-
- <a href=r38_0100.html#r38_0141>coeff</a>, or
- <a href=r38_0100.html#r38_0142>coeffn</a> cannot be used. Instead, the
- expression at hand has to be converted to standard form first
- using the
- <a href=r38_0500.html#r38_0547>taylortostandard</a> operator.
- <P>
- <P>
- Differentiation of a Taylor expression is possible. If you
- differentiate with respect to one of the Taylor variables the
- order will decrease by one.
- <P>
- <P>
- Substitution is a bit restricted: Taylor variables can only be
- replaced by other kernels. There is one exception to this rule:
- you can always substitute a Taylor variable by an expression that
- evaluates to a constant. Note that REDUCE will not always be able
- to determine that an expression is constant: an example is
- sin(acos(4)).
- <P>
- <P>
- Only simple taylor kernels can be integrated. More complicated
- expressions that contain Taylor kernels as parts of themselves are
- automatically converted into a standard representation by means of
- the
- <a href=r38_0500.html#r38_0547>taylortostandard</a> operator. In this case a sui
- table
- warning is printed.
- <P>
- <P>
- <P>
- <P>
- <a name=r38_0537>
- <title>taylorautocombine</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORAUTOCOMBINE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>switch</b><P>
- <P>
-
- If you set <em>taylorautocombine</em> to <em>on</em>, REDUCE
- automatically combines Taylor expressions during the simplification
- process. This is equivalent to applying
- <a href=r38_0500.html#r38_0539>taylorcombine</a> to
- every expression that contains Taylor kernels. Default is
- <em>on</em>.
- <P>
- <P>
- <a name=r38_0538>
- <title>taylorautoexpand</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORAUTOEXPAND</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>switch</b><P>
- <P>
-
- <em>taylorautoexpand</em> makes Taylor expressions ``contagious'' in
- the sense that
- <a href=r38_0500.html#r38_0539>taylorcombine</a> tries to Taylor expand all
- non-Taylor subexpressions and to combine the result with the rest.
- Default is <em>off</em>.
- <P>
- <P>
- <a name=r38_0539>
- <title>taylorcombine</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORCOMBINE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- This operator tries to combine all Taylor kernels found in its
- argument into one. Operations currently possible are:
- <P>
- <P>
- _ _ _ Addition, subtraction, multiplication, and division.
- <P>
- _ _ _ Roots, exponentials, and logarithms.
- <P>
- _ _ _ Trigonometric and hyperbolic functions and their inverses.
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- hugo := taylor(exp(x),x,0,2);
- 1 2 3
- HUGO := 1 + X + -*X + O(X )
- 2
- taylorcombine log hugo;
- 3
- X + O(X )
- taylorcombine(hugo + x);
- 1 2 3
- (1 + X + -*X + O(X )) + X
- 2
- on taylorautoexpand;
- taylorcombine(hugo + x);
- 1 2 3
- 1 + 2*X + -*X + O(X )
- 2
- </tt></pre><p>Application of unary operators like <em>log</em> and <em>atan</em>
-
- will nearly always succeed. For binary operations their arguments
- have to be Taylor kernels with the same template. This means that
- the expansion variable and the expansion point must match.
- Expansion order is not so important, different order usually means
- that one of them is truncated before doing the operation.
- <P>
- <P>
- If
- <a href=r38_0500.html#r38_0540>taylorkeeporiginal</a> is set to <em>on</em> and
- if all
- Taylor kernels in its argument have their original expressions
- kept <em>taylorcombine</em> will also combine these and store the
- result as the original expression of the resulting Taylor kernel.
- There is also the switch
- <a href=r38_0500.html#r38_0538>taylorautoexpand</a>.
- <P>
- <P>
- There are a few restrictions to avoid mathematically undefined
- expressions: it is not possible to take the logarithm of a Taylor
- kernel which has no terms (i.e. is zero), or to divide by such a
- beast. There are some provisions made to detect singularities
- during expansion: poles that arise because the denominator has
- zeros at the expansion point are detected and properly treated,
- i.e. the Taylor kernel will start with a negative power. (This
- is accomplished by expanding numerator and denominator separately
- and combining the results.) Essential singularities of the known
- functions (see above) are handled correctly.
- <P>
- <P>
- <P>
- <a name=r38_0540>
- <title>taylorkeeporiginal</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORKEEPORIGINAL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>switch</b><P>
- <P>
-
- <em>taylorkeeporiginal</em>, if set to <em>on</em>, forces the
-
- <a href=r38_0500.html#r38_0536>taylor</a> and all Taylor kernel manipulation ope
- rators to
- keep the original expression, i.e. the expression that was Taylor
- expanded. All operations performed on the Taylor kernels are also
- applied to this expression which can be recovered using the operator
-
- <a href=r38_0500.html#r38_0541>taylororiginal</a>. Default is <em>off</em>.
- <P>
- <P>
- <a name=r38_0541>
- <title>taylororiginal</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORORIGINAL</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- Recovers the original expression (the one that was expanded) from
- the Taylor kernel that is given as its argument.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>taylororiginal</em>(<expression>) or
- <em>taylororiginal</em> <simple_expression>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- hugo := taylor(exp(x),x,0,2);
- 1 2 3
- HUGO := 1 + X + -*X + O(X )
- 2
- taylororiginal hugo;
- ***** Taylor kernel doesn't have an original part in TAYLORORIGINAL
- on taylorkeeporiginal;
- hugo := taylor(exp(x),x,0,2);
- 1 2 3
- HUGO := 1 + X + -*X + O(X )
- 2
- taylororiginal hugo;
- X
- E
- </tt></pre><p>An error is signalled if the argument is not a Taylor kernel or if
-
- the original expression was not kept, i.e. if
-
- <a href=r38_0500.html#r38_0540>taylorkeeporiginal</a> was set <em>off</em> durin
- g expansion.
- <P>
- <P>
- <P>
- <a name=r38_0542>
- <title>taylorprintorder</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORPRINTORDER</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>switch</b><P>
- <P>
-
- <em>taylorprintorder</em>, if set to <em>on</em>, causes the remainder
- to be printed in big-O notation. Otherwise, three dots are printed.
- Default is <em>on</em>.
- <P>
- <P>
- <a name=r38_0543>
- <title>taylorprintterms</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORPRINTTERMS</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>variable</b><P>
- <P>
-
- Only a certain number of (non-zero) coefficients are printed. If
- there are more, an expression of the form <em>n terms</em> is printed
- to indicate how many non-zero terms have been suppressed. The
- number of terms printed is given by the value of the shared
- algebraic variable <em>taylorprintterms</em>. Allowed values are
- integers and the special identifier <em>all</em>. The latter setting
- specifies that all terms are to be printed. The default setting is
- 5.
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- taylor(e^(x^2+y^2),x,0,4,y,0,4);
- 2 1 4 2 2 2 5 5
- 1 + Y + -*Y + X + Y *X + (4 terms) + O(X ,Y )
- 2
- taylorprintterms := all;
- TAYLORPRINTTERMS := ALL
- taylor(e^(x^2+y^2),x,0,4,y,0,4);
- 2 1 4 2 2 2 1 4 2 1 4 1 2 4
- 1 + Y + -*Y + X + Y *X + -*Y *X + -*X + -*Y *X
- 2 2 2 2
- 1 4 4 5 5
- + -*Y *X + O(X ,Y )
- 4
-
- </tt></pre><p>
- <a name=r38_0544>
- <title>taylorrevert</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORREVERT</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- <em>taylorrevert</em> allows reversion of a Taylor series of a
- function f, i.e., to compute the first terms of the expansion of the
- inverse of f from the expansion of f.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>taylorrevert</em>(<expression><em>,</em>
- <var><em>,</em><var>)
- <P>
- <P>
- <P>
- The first argument must evaluate to a Taylor kernel with the second
- argument being one of its expansion variables.
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- taylor(u - u**2,u,0,5);
- 2 6
- U - U + O(U )
- taylorrevert (ws,u,x);
- 2 3 4 5 6
- X + X + 2*X + 5*X + 14*X + O(X )
- </tt></pre><p>
- <a name=r38_0545>
- <title>taylorseriesp</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORSERIESP</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- This operator may be used to determine if its argument is a Taylor
- kernel.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>taylorseriesp</em>(<expression>) or <em>taylorseriesp</em>
- <simple_expression>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- hugo := taylor(exp(x),x,0,2);
- 1 2 3
- HUGO := 1 + X + -*X + O(X )
- 2
- if taylorseriesp hugo then OK;
- OK
- if taylorseriesp(hugo + y) then OK else NO;
- NO
- </tt></pre><p>Note that this operator is subject to the same restrictions as,
- e.g., <em>ordp</em> or <em>numberp</em>, i.e. it may only be used in
- boolean expressions in <em>if</em> or <em>let</em> statements.
- <P>
- <P>
- <P>
- <a name=r38_0546>
- <title>taylortemplate</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORTEMPLATE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- The template of a Taylor kernel, i.e. the list of all variables
- with respect to which expansion took place together with expansion
- point and order can be extracted using
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>taylortemplate</em>(<expression>) or
- <em>taylortemplate</em> <simple_expression>
- <P>
- <P>
- <P>
- This returns a list of lists with the three elements
- (VAR,VAR0,ORDER). An error is signalled if the argument is not a
- Taylor kernel.
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- hugo := taylor(exp(x),x,0,2);
- 1 2 3
- HUGO := 1 + X + -*X + O(X )
- 2
- taylortemplate hugo;
- {{X,0,2}}
- </tt></pre><p>
- <a name=r38_0547>
- <title>taylortostandard</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>TAYLORTOSTANDARD</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>operator</b><P>
- <P>
-
- This operator converts all Taylor kernels in its argument into
- standard form and resimplifies the result.
- <P>
- <P>
- <P> <H3>
- syntax: </H3>
- <em>taylortostandard</em>(<expression>) or
- <em>taylortostandard</em> <simple_expression>
- <P>
- <P>
- <P>
- <P> <H3>
- examples: </H3>
- <p><pre><tt>
- hugo := taylor(exp(x),x,0,2);
- 1 2 3
- HUGO := 1 + X + -*X + O(X )
- 2
- taylortostandard hugo;
- 2
- X + 2*X + 2
- ------------
- 2
- </tt></pre><p><P>
- <a name=r38_0548>
- <title>Taylor series</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>Taylor series</b><menu>
- <li><a href=r38_0500.html#r38_0535>TAYLOR introduction</a><P>
- <li><a href=r38_0500.html#r38_0536>taylor operator</a><P>
- <li><a href=r38_0500.html#r38_0537>taylorautocombine switch</a><P>
- <li><a href=r38_0500.html#r38_0538>taylorautoexpand switch</a><P>
- <li><a href=r38_0500.html#r38_0539>taylorcombine operator</a><P>
- <li><a href=r38_0500.html#r38_0540>taylorkeeporiginal switch</a><P>
- <li><a href=r38_0500.html#r38_0541>taylororiginal operator</a><P>
- <li><a href=r38_0500.html#r38_0542>taylorprintorder switch</a><P>
- <li><a href=r38_0500.html#r38_0543>taylorprintterms variable</a><P>
- <li><a href=r38_0500.html#r38_0544>taylorrevert operator</a><P>
- <li><a href=r38_0500.html#r38_0545>taylorseriesp operator</a><P>
- <li><a href=r38_0500.html#r38_0546>taylortemplate operator</a><P>
- <li><a href=r38_0500.html#r38_0547>taylortostandard operator</a><P>
- </menu>
- <a name=r38_0549>
- <title>GNUPLOT_and_REDUCE</title></a>
- <p align="centre"><img src="redlogo.gif" width=621 height=60 border=0 alt="REDUC
- E"></p>
- <b><a href=r38_idx.html>INDEX</a></b><p><p>
- <b>GNUPLOT AND REDUCE</b> _ _ _ _ _ _ _ _ _ _ _ _ <b>introduction</b><P>
- <P>
-
- <P>
- <P>
- The GNUPLOT system provides easy to use graphics output
- for curves or surfaces which are defined by
- formulas and/or data sets. GNUPLOT supports
- a great variety of output devices
- such as X-windows, VGA screen, postscript, picTeX.
- The REDUCE GNUPLOT package lets one use the GNUPLOT
- graphical output directly from inside REDUCE, either for
- the interactive display of curves/surfaces or for the production
- of pictures on paper.
- <P>
- <P>
- Note that this package may not be supported on all system
- platforms.
- <P>
- <P>
- For a detailed description you should read the GNUPLOT
- system documentation, available together with the GNUPLOT
- installation material from several servers by anonymous FTP.
- <P>
- <P>
- The REDUCE developers thank the GNUPLOT people for their permission
- to distribute GNUPLOT together with REDUCE.
- <P>
- <P>
|