123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- \chapter[XCOLOR: Color factor in gauge theory]%
- {XCOLOR: Calculation of the color factor in non-abelian gauge
- field theories}
- \label{XCOLOR}
- \typeout{{XCOLOR: Calculation of the color factor in non-abelian gauge
- field theories}}
- {\footnotesize
- \begin{center}
- A. Kryukov \\
- Institute for Nuclear Physics, Moscow State University \\
- 119899, Moscow, Russia \\[0.05in]
- e--mail: kryukov@npi.msu.su
- \end{center}
- }
- \ttindex{XCOLOR}
- XCOLOR calculates the colour factor in non-abelian gauge field
- theories. It provides two commands and two operators.
- \noindent{\tt SUdim} integer\ttindex{SUdim}
- Sets the order of the SU group. The default value is 3.
- \noindent{\tt SpTT} expression\ttindex{SpTT}
- Sets the normalisation coefficient A in the equation
- $Sp(T_i T_j) = A \Delta(i,j)$. The default value is 1/2.
- \noindent{\tt QG}(inQuark, outQuark, Gluon)\ttindex{QG}
- Describes the quark-gluon vertex. The parameters may be any identifiers.
- The first and second of then must be in- and out- quarks correspondingly.
- Third one is a gluon.
- \noindent{\tt G3}(Gluon1, Gluon2, Gluon3)\ttindex{G3}
- Describes the three-gluon vertex. The parameters may be any identifiers.
- The order of gluons must be clockwise.
- In terms of QG and G3 operators one can input a diagram in ``color'' space as
- a product of these operators. For example
- \newpage
- \begin{verbatim}
- e1
- ---->---
- / \
- / \
- | e2 |
- v1*............*v2
- | |
- \ /
- \ e3 /
- ----<---
- \end{verbatim}
- where \verb+--->---+ is a quark and \verb+.......+ is a gluon.
- The related \REDUCE\ expression is {\tt QG(e3,e1,e2)*QG(e1,e3,e2)}.
|